Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Kidney Int ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38521406

RESUMO

Cardiovascular disease, infection, malignancy, and thromboembolism are major causes of morbidity and mortality in kidney transplant recipients (KTR). Prospectively identifying monogenic conditions associated with post-transplant complications may enable personalized management. Therefore, we developed a transplant morbidity panel (355 genes) associated with major post-transplant complications including cardiometabolic disorders, immunodeficiency, malignancy, and thrombophilia. This gene panel was then evaluated using exome sequencing data from 1590 KTR. Additionally, genes associated with monogenic kidney and genitourinary disorders along with American College of Medical Genetics (ACMG) secondary findings v3.2 were annotated. Altogether, diagnostic variants in 37 genes associated with Mendelian kidney and genitourinary disorders were detected in 9.9% (158/1590) of KTR; 25.9% (41/158) had not been clinically diagnosed. Moreover, the transplant morbidity gene panel detected diagnostic variants for 56 monogenic disorders in 9.1% KTRs (144/1590). Cardiovascular disease, malignancy, immunodeficiency, and thrombophilia variants were detected in 5.1% (81), 2.1% (34), 1.8% (29) and 0.2% (3) among 1590 KTRs, respectively. Concordant phenotypes were present in half of these cases. Reviewing implications for transplant care, these genetic findings would have allowed physicians to set specific risk factor targets in 6.3% (9/144), arrange intensive surveillance in 97.2% (140/144), utilize preventive measures in 13.2% (19/144), guide disease-specific therapy in 63.9% (92/144), initiate specialty referral in 90.3% (130/144) and alter immunosuppression in 56.9% (82/144). Thus, beyond diagnostic testing for kidney disorders, sequence annotation identified monogenic disorders associated with common post-transplant complications in 9.1% of KTR, with important clinical implications. Incorporating genetic diagnostics for transplant morbidities would enable personalized management in pre- and post-transplant care.

2.
J Am Soc Nephrol ; 32(11): 2958-2969, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34670811

RESUMO

BACKGROUND: The long-term outcome of COVID-19-associated collapsing glomerulopathy is unknown. METHODS: We retrospectively identified 76 native kidney biopsies from patients with history of COVID-19 between March 2020 and April 2021. Presenting and outcome data were obtained for all 23 patients with collapsing glomerulopathy and for seven patients with noncollapsing podocytopathies. We performed APOL1 genotyping by Sanger sequencing, immunostaining for spike and nucleocapsid proteins, and in situ hybridization for SARS-CoV-2. RESULTS: The 23 patients with COVID-19-associated collapsing glomerulopathy were median age 57 years (range, 35-72), included 16 men, and were predominantly (91%) Black. Severity of COVID-19 was mild or moderate in most (77%) patients. All but one patient presented with AKI, 17 had nephrotic-range proteinuria, and six had nephrotic syndrome. Fourteen (61%) patients required dialysis at presentation. Among 17 patients genotyped, 16 (94%) were high-risk APOL1. Among 22 (96%) patients with median follow-up at 155 days (range, 30-412), 11 (50%) received treatment for COVID-19, and eight (36%) received glucocorticoid therapy for podocytopathy. At follow-up, 19 (86%) patients were alive, and 15 (68%) were dialysis free, including seven of 14 who initially required dialysis. The dialysis-free patients included 64% (seven of 11) of those treated for COVID-19 and 75% (six of eight) of those treated with glucocorticoids for podocytopathy. Overall, 36% achieved partial remission of proteinuria, 32% had no remission, and 32% reached combined end points of ESKD or death. Viral infection of the kidney was not detected. CONCLUSIONS: Half of 14 patients with COVID-19-associated collapsing glomerulopathy requiring dialysis achieved dialysis independence, but the long-term prognosis of residual proteinuric CKD remains guarded, indicating a need for more effective therapy.


Assuntos
COVID-19/complicações , Glomérulos Renais/patologia , Podócitos/patologia , Insuficiência Renal/patologia , Insuficiência Renal/virologia , Adulto , Idoso , COVID-19/patologia , COVID-19/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recuperação de Função Fisiológica , Diálise Renal , Insuficiência Renal/terapia , Estudos Retrospectivos , Resultado do Tratamento
3.
Am J Hum Genet ; 101(5): 789-802, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100090

RESUMO

Renal agenesis and hypodysplasia (RHD) are major causes of pediatric chronic kidney disease and are highly genetically heterogeneous. We conducted whole-exome sequencing in 202 case subjects with RHD and identified diagnostic mutations in genes known to be associated with RHD in 7/202 case subjects. In an additional affected individual with RHD and a congenital heart defect, we found a homozygous loss-of-function (LOF) variant in SLIT3, recapitulating phenotypes reported with Slit3 inactivation in the mouse. To identify genes associated with RHD, we performed an exome-wide association study with 195 unresolved case subjects and 6,905 control subjects. The top signal resided in GREB1L, a gene implicated previously in Hoxb1 and Shha signaling in zebrafish. The significance of the association, which was p = 2.0 × 10-5 for novel LOF, increased to p = 4.1 × 10-6 for LOF and deleterious missense variants combined, and augmented further after accounting for segregation and de novo inheritance of rare variants (joint p = 2.3 × 10-7). Finally, CRISPR/Cas9 disruption or knockdown of greb1l in zebrafish caused specific pronephric defects, which were rescued by wild-type human GREB1L mRNA, but not mRNA containing alleles identified in case subjects. Together, our study provides insight into the genetic landscape of kidney malformations in humans, presents multiple candidates, and identifies SLIT3 and GREB1L as genes implicated in the pathogenesis of RHD.


Assuntos
Anormalidades Congênitas/genética , Exoma/genética , Nefropatias/congênito , Rim/anormalidades , Mutação/genética , Proteínas de Neoplasias/genética , Alelos , Animais , Estudos de Casos e Controles , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Feminino , Heterogeneidade Genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Hereditariedade/genética , Homozigoto , Humanos , Nefropatias/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Fenótipo , RNA Longo não Codificante/genética , Sistema Urinário/anormalidades , Anormalidades Urogenitais/genética , Peixe-Zebra
4.
Kidney Int ; 90(6): 1262-1273, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27591083

RESUMO

Primary glomerulocystic kidney disease is a special form of renal cystic disorder characterized by Bowman's space dilatation in the absence of tubular cysts. ZEB2 is a SMAD-interacting transcription factor involved in Mowat-Wilson syndrome, a congenital disorder with an increased risk for kidney anomalies. Here we show that deletion of Zeb2 in mesenchyme-derived nephrons with either Pax2-cre or Six2-cre causes primary glomerulocystic kidney disease without tubular cysts in mice. Glomerulotubular junction analysis revealed many atubular glomeruli in the kidneys of Zeb2 knockout mice, which explains the presence of glomerular cysts in the absence of tubular dilatation. Gene expression analysis showed decreased expression of early proximal tubular markers in the kidneys of Zeb2 knockout mice preceding glomerular cyst formation, suggesting that defects in proximal tubule development during early nephrogenesis contribute to the formation of congenital atubular glomeruli. At the molecular level, Zeb2 deletion caused aberrant expression of Pkd1, Hnf1ß, and Glis3, three genes causing glomerular cysts. Thus, Zeb2 regulates the morphogenesis of mesenchyme-derived nephrons and is required for proximal tubule development and glomerulotubular junction formation. Our findings also suggest that ZEB2 might be a novel disease gene in patients with primary glomerular cystic disease.


Assuntos
Doenças do Sistema Nervoso Central/genética , Esmalte Dentário/anormalidades , Diabetes Mellitus Tipo 2/genética , Proteínas de Homeodomínio/fisiologia , Doenças Renais Císticas/genética , Rim/embriologia , Proteínas Repressoras/fisiologia , Animais , Proteínas de Ligação a DNA , Fator 1-beta Nuclear de Hepatócito/metabolismo , Rim/metabolismo , Camundongos Knockout , Proteínas Repressoras/metabolismo , Canais de Cátion TRPP/metabolismo , Transativadores/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco
5.
Cell Rep ; 2(1): 52-61, 2012 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22840396

RESUMO

Robo2 is the cell surface receptor for the repulsive guidance cue Slit and is involved in axon guidance and neuronal migration. Nephrin is a podocyte slit-diaphragm protein that functions in the kidney glomerular filtration barrier. Here, we report that Robo2 is expressed at the basal surface of mouse podocytes and colocalizes with nephrin. Biochemical studies indicate that Robo2 forms a complex with nephrin in the kidney through adaptor protein Nck. In contrast to the role of nephrin that promotes actin polymerization, Slit2-Robo2 signaling inhibits nephrin-induced actin polymerization. In addition, the amount of F-actin associated with nephrin is increased in Robo2 knockout mice that develop an altered podocyte foot process structure. Genetic interaction study further reveals that loss of Robo2 alleviates the abnormal podocyte structural phenotype in nephrin null mice. These results suggest that Robo2 signaling acts as a negative regulator on nephrin to influence podocyte foot process architecture.


Assuntos
Proteínas de Membrana/antagonistas & inibidores , Podócitos/citologia , Podócitos/ultraestrutura , Receptores Imunológicos/fisiologia , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Células Cultivadas , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/fisiologia , Podócitos/metabolismo , Podócitos/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor Cross-Talk/fisiologia , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA