Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; 40(12): 3413-3423, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34086562

RESUMO

Detecting various types of cells in and around the tumor matrix holds a special significance in characterizing the tumor micro-environment for cancer prognostication and research. Automating the tasks of detecting, segmenting, and classifying nuclei can free up the pathologists' time for higher value tasks and reduce errors due to fatigue and subjectivity. To encourage the computer vision research community to develop and test algorithms for these tasks, we prepared a large and diverse dataset of nucleus boundary annotations and class labels. The dataset has over 46,000 nuclei from 37 hospitals, 71 patients, four organs, and four nucleus types. We also organized a challenge around this dataset as a satellite event at the International Symposium on Biomedical Imaging (ISBI) in April 2020. The challenge saw a wide participation from across the world, and the top methods were able to match inter-human concordance for the challenge metric. In this paper, we summarize the dataset and the key findings of the challenge, including the commonalities and differences between the methods developed by various participants. We have released the MoNuSAC2020 dataset to the public.


Assuntos
Algoritmos , Núcleo Celular , Humanos , Processamento de Imagem Assistida por Computador
2.
Med Image Anal ; 70: 102027, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33740739

RESUMO

Lung cancer is the deadliest type of cancer worldwide and late detection is the major factor for the low survival rate of patients. Low dose computed tomography has been suggested as a potential screening tool but manual screening is costly and time-consuming. This has fuelled the development of automatic methods for the detection, segmentation and characterisation of pulmonary nodules. In spite of promising results, the application of automatic methods to clinical routine is not straightforward and only a limited number of studies have addressed the problem in a holistic way. With the goal of advancing the state of the art, the Lung Nodule Database (LNDb) Challenge on automatic lung cancer patient management was organized. The LNDb Challenge addressed lung nodule detection, segmentation and characterization as well as prediction of patient follow-up according to the 2017 Fleischner society pulmonary nodule guidelines. 294 CT scans were thus collected retrospectively at the Centro Hospitalar e Universitrio de So Joo in Porto, Portugal and each CT was annotated by at least one radiologist. Annotations comprised nodule centroids, segmentations and subjective characterization. 58 CTs and the corresponding annotations were withheld as a separate test set. A total of 947 users registered for the challenge and 11 successful submissions for at least one of the sub-challenges were received. For patient follow-up prediction, a maximum quadratic weighted Cohen's kappa of 0.580 was obtained. In terms of nodule detection, a sensitivity below 0.4 (and 0.7) at 1 false positive per scan was obtained for nodules identified by at least one (and two) radiologist(s). For nodule segmentation, a maximum Jaccard score of 0.567 was obtained, surpassing the interobserver variability. In terms of nodule texture characterization, a maximum quadratic weighted Cohen's kappa of 0.733 was obtained, with part solid nodules being particularly challenging to classify correctly. Detailed analysis of the proposed methods and the differences in performance allow to identify the major challenges remaining and future directions - data collection, augmentation/generation and evaluation of under-represented classes, the incorporation of scan-level information for better decision-making and the development of tools and challenges with clinical-oriented goals. The LNDb Challenge and associated data remain publicly available so that future methods can be tested and benchmarked, promoting the development of new algorithms in lung cancer medical image analysis and patient follow-up recommendation.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Algoritmos , Bases de Dados Factuais , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA