Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 531(17): 1828-1845, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37814509

RESUMO

The blood-brain barrier (BBB) is a physical interface between the blood and the brain parenchyma, playing key roles in brain homeostasis. In mammals, the BBB is established thanks to tight junctions between cerebral endothelial cells, involving claudin, occludin, and zonula occludens proteins. Estrogens have been documented to modulate BBB permeability. Interestingly, in the brain of zebrafish, the estrogen-synthesizing activity is strong due to the high expression of Aromatase B protein, encoded by the cyp19a1b gene, in radial glial cells (neural stem cells). Given the roles of estrogens in BBB function, we investigated their impact on the expression of genes involved in BBB tight junctions. We treated zebrafish embryos and adult males with 17ß-estradiol and observed an increased cerebral expression of tight junction and claudin 5 genes in adult males only. In females, treatment with the nuclear estrogen receptor antagonist (ICI182,780 ) had no impact. Interestingly, telencephalic injuries performed in males decreased tight junction gene expression that was partially reversed with 17ß-estradiol. This was further confirmed by extravasation experiments of Evans blue showing that estrogenic treatment limits BBB leakage. We also highlighted the intimate links between endothelial cells and neural stem cells, suggesting that cholesterol and peripheral steroids could be taken up by endothelial cells and used as precursors for estrogen synthesis by neural stem cells. Together, our results show that zebrafish provides an alternative model to further investigate the role of steroids on the expression of genes involved in BBB integrity, both in constitutive and regenerative physiological conditions. The link we described between capillaries endothelial cells and steroidogenic neural cells encourages the use of this model in understanding the mechanisms by which peripheral steroids get into neural tissue and modulate neurogenic activity.


Assuntos
Barreira Hematoencefálica , Peixe-Zebra , Animais , Feminino , Masculino , Barreira Hematoencefálica/metabolismo , Claudina-5/genética , Claudina-5/metabolismo , Células Endoteliais/metabolismo , Estradiol/farmacologia , Estrogênios/farmacologia , Estrogênios/metabolismo , Expressão Gênica , Mamíferos , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Peixe-Zebra/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
2.
Pharmaceutics ; 15(4)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37111695

RESUMO

The efficient and biocompatible transfer of nucleic acids into mammalian cells for research applications or medical purposes is a long-standing, challenging task. Viral transduction is the most efficient transfer system, but often entails high safety levels for research and potential health impairments for patients in medical applications. Lipo- or polyplexes are commonly used transfer systems but result in comparably low transfer efficiencies. Moreover, inflammatory responses caused by cytotoxic side effects were reported for these transfer methods. Often accountable for these effects are various recognition mechanisms for transferred nucleic acids. Using commercially available fusogenic liposomes (Fuse-It-mRNA), we established highly efficient and fully biocompatible transfer of RNA molecules for in vitro as well as in vivo applications. We demonstrated bypassing of endosomal uptake routes and, therefore, of pattern recognition receptors that recognize nucleic acids with high efficiency. This may underlie the observed almost complete abolishment of inflammatory cytokine responses. RNA transfer experiments into zebrafish embryos and adult animals fully confirmed the functional mechanism and the wide range of applications from single cells to organisms.

3.
Cells ; 12(2)2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36672187

RESUMO

Over the past century, advances in biotechnology, biochemistry, and pharmacognosy have spotlighted flavonoids, polyphenolic secondary metabolites that have the ability to modulate many pathways involved in various biological mechanisms, including those involved in neuronal plasticity, learning, and memory. Moreover, flavonoids are known to impact the biological processes involved in developing neurodegenerative diseases, namely oxidative stress, neuroinflammation, and mitochondrial dysfunction. Thus, several flavonoids could be used as adjuvants to prevent and counteract neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Zebrafish is an interesting model organism that can offer new opportunities to study the beneficial effects of flavonoids on neurodegenerative diseases. Indeed, the high genome homology of 70% to humans, the brain organization largely similar to the human brain as well as the similar neuroanatomical and neurochemical processes, and the high neurogenic activity maintained in the adult brain makes zebrafish a valuable model for the study of human neurodegenerative diseases and deciphering the impact of flavonoids on those disorders.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Animais , Peixe-Zebra/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Encéfalo/metabolismo
4.
J Med Chem ; 65(22): 15263-15281, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36346705

RESUMO

Phenotypic drug discovery (PDD) continues to fuel the research and development pipelines with first-in-class therapeutic modalities, but success rates critically depend on the quality of the underlying model system. Here, we employed a stem cell-based approach for the target-agnostic, yet pathway-centric discovery of small-molecule cytokine signaling activators to act as morphogens during development and regeneration. Unbiased screening identified triazolo[1,5-c]quinazolines as a new-in-class in vitro and in vivo active amplifier of the bone morphogenetic protein (BMP) pathway. Cellular BMP outputs were stimulated via enhanced and sustained availability of BMP-Smad proteins, strictly dependent on a minimal BMP input. Holistic target deconvolution unveiled a unique mechanism of dual targeting of casein kinase 1 and phosphatidyl inositol 3-kinase isoforms as key effectors for efficient amplification of osteogenic BMP signaling. This work underscores the asset of PDD to discover unrecognized polypharmacology signatures, in this case significantly expanding the chemical and druggable space of BMP modulators.


Assuntos
Proteínas Morfogenéticas Ósseas , Quinazolinas , Triazóis , Proteína Morfogenética Óssea 2/metabolismo , Proteínas Morfogenéticas Ósseas/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Osteogênese , Quinazolinas/farmacologia , Proteínas Smad/metabolismo , Triazóis/farmacologia
5.
Mov Disord ; 37(2): 365-374, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34820905

RESUMO

BACKGROUND: The dystonias are a heterogeneous group of hyperkinetic disorders characterized by sustained or intermittent muscle contractions that cause abnormal movements and/or postures. Although more than 200 causal genes are known, many cases of primary dystonia have no clear genetic cause. OBJECTIVES: To identify the causal gene in a consanguineous family with three siblings affected by a complex persistent generalized dystonia, generalized epilepsy, and mild intellectual disability. METHODS: We performed exome sequencing in the parents and two affected siblings and characterized the expression of the identified gene by immunohistochemistry in control human and zebrafish brains. RESULTS: We identified a novel missense variant (c.142G>A (NM_032192); p.Glu48Lys) in the protein phosphatase 1 regulatory inhibitor subunit 1B gene (PPP1R1B) that was homozygous in all three siblings and heterozygous in the parents. This gene is also known as dopamine and cAMP-regulated neuronal phosphoprotein 32 (DARPP-32) and has been involved in the pathophysiology of abnormal movements. The uncovered variant is absent in public databases and modifies the conserved glutamate 48 localized close to the serine 45 phosphorylation site. The PPP1R1B protein was shown to be expressed in cells and regions involved in movement control, including projection neurons of the caudate-putamen, substantia nigra neuropil, and cerebellar Purkinje cells. The latter cells were also confirmed to be positive for PPP1R1B expression in the zebrafish brain. CONCLUSIONS: We report the association of a PPP1R1B/DARPP-32 variant with generalized dystonia in man. It might be relevant to include the sequencing of this new gene in the diagnosis of patients with otherwise unexplained movement disorders. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Distonia , Distúrbios Distônicos , Animais , Distúrbios Distônicos/genética , Homozigoto , Humanos , Peixe-Zebra
6.
Front Chem ; 9: 688446, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262894

RESUMO

Labeling biomolecules with fluorescent labels is an established tool for structural, biochemical, and biophysical studies; however, it remains underused for small peptides. In this work, an amino acid bearing a 3-hydroxychromone fluorophore, 2-amino-3-(2-(furan-2-yl)-3-hydroxy-4-oxo-4H-chromen-6-yl)propanoic acid (FHC), was incorporated in a known hexameric antimicrobial peptide, cyclo[RRRWFW] (cWFW), in place of aromatic residues. Circular dichroism spectropolarimetry and antibacterial activity measurements demonstrated that the FHC residue perturbs the peptide structure depending on labeling position but does not modify the activity of cWFW significantly. FHC thus can be considered an adequate label for studies of the parent peptide. Several analytical and imaging techniques were used to establish the activity of the obtained labeled cWFW analogues toward animal cells and to study the behavior of the peptides in a multicellular organism. The 3-hydroxychromone fluorophore can undergo excited-state intramolecular proton transfer (ESIPT), resulting in double-band emission from its two tautomeric forms. This feature allowed us to get insights into conformational equilibria of the labeled peptides, localize the cWFW analogues in human cells (HeLa and HEK293) and zebrafish embryos, and assess the polarity of the local environment around the label by confocal fluorescence microscopy. We found that the labeled peptides efficiently penetrated cancerous cells and localized mainly in lipid-containing and/or other nonpolar subcellular compartments. In the zebrafish embryo, the peptides remained in the bloodstream upon injection into the cardinal vein, presumably adhering to lipoproteins and/or microvesicles. They did not diffuse into any tissue to a significant extent during the first 3 h after administration. This study demonstrated the utility of fluorescent labeling by double-emission labels to evaluate biologically active peptides as potential drug candidates in vivo.

7.
Nat Commun ; 7: 12875, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27641898

RESUMO

Failure to repair the sarcolemma leads to muscle cell death, depletion of stem cells and myopathy. Hence, membrane lesions are instantly sealed by a repair patch consisting of lipids and proteins. It has remained elusive how this patch is removed to restore cell membrane integrity. Here we examine sarcolemmal repair in live zebrafish embryos by real-time imaging. Macrophages remove the patch. Phosphatidylserine (PS), an 'eat-me' signal for macrophages, is rapidly sorted from adjacent sarcolemma to the repair patch in a Dysferlin (Dysf) dependent process in zebrafish and human cells. A previously unrecognized arginine-rich motif in Dysf is crucial for PS accumulation. It carries mutations in patients presenting with limb-girdle muscular dystrophy 2B. This underscores the relevance of this sequence and uncovers a novel pathophysiological mechanism underlying this class of myopathies. Our data show that membrane repair is a multi-tiered process involving immediate, cell-intrinsic mechanisms as well as myofiber/macrophage interactions.


Assuntos
Disferlina/metabolismo , Macrófagos/fisiologia , Proteínas de Membrana/metabolismo , Distrofia Muscular do Cíngulo dos Membros/genética , Fosfatidilserinas/metabolismo , Sarcolema/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Arginina/genética , Disferlina/genética , Embrião não Mamífero , Células HeLa , Humanos , Proteínas de Membrana/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
8.
Gene Expr Patterns ; 4(1): 53-7, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14678828

RESUMO

We describe the isolation of zebrafish growth factor independent 1 (gfi1) and present an analysis of its pattern of expression during early development. As with its murine homologue, gfi1 expression is detected in the ganglion cells of the neural retina and in developing hair cells of the ear. In keeping with a role in the development of sensory hair cells, gfi1 is also expressed in neuromasts of the anterior and posterior lateral line system. Finally, gfi1 is expressed in the developing epithalamus in the dorsal diencephalon where its transcription is restricted to the parapineal.


Assuntos
Proteínas de Ligação a DNA/genética , Epitálamo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glândula Pineal/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Epitálamo/embriologia , Hibridização In Situ , Dados de Sequência Molecular , Glândula Pineal/embriologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Peixe-Zebra/embriologia
9.
Dev Biol ; 252(1): 1-14, 2002 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-12453456

RESUMO

The floor plate is an organising centre that controls neural differentiation and axonogenesis in the neural tube. The axon guidance molecule Netrin1 is expressed in the floor plate of zebrafish embryos. To elucidate the regulatory mechanisms underlying expression in the floor plate, we scanned the netrin1 locus for regulatory regions and identified an enhancer that drives expression in the floor plate and hypochord of transgenic embryos. The expression of the transgene is ectopically activated by Cyclops (Nodal) signals but does not respond to Hedgehog signals. The winged-helix transcription factor foxA2 (also HNF3beta, axial) is expressed in the notochord and floor plate. We show that knock-down of FoxA2 leads to loss of floor plate, while notochord and hypochord development is unaffected, suggesting a specific requirement of FoxA2 in the floor plate. The transgene is ectopically activated by FoxA2, and expression of FoxA2 leads to rescue of floor plate differentiation in mutant embryos that are deficient in Cyclops signalling. Zebrafish and mouse use different signalling systems to specify floor plate. The zebrafish netrin1 regulatory region also drives expression in the floor plate of mouse and chicken embryos. This suggests that components of the regulatory circuits controlling expression in the floor plate are conserved and that FoxA2-given its importance for midline development also in the mouse-may be one such component.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Fatores de Crescimento Neural/genética , Sistema Nervoso/embriologia , Proteínas Nucleares/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Embrião de Galinha , Clonagem Molecular , Primers do DNA , Fator 3-beta Nuclear de Hepatócito , Peptídeos e Proteínas de Sinalização Intracelular , Íntrons , Camundongos , Microinjeções , Netrina-1 , Proteínas Supressoras de Tumor , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra
10.
Mech Dev ; 113(1): 99-102, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11900982

RESUMO

Proteins of the Extramacrochaetae and Id subfamily of Helix-Loop-Helix (HLH) proteins are negative regulators of bHLH transcription factors. We cloned a cDNA from zebrafish which encodes a member of the id3 subfamily. High levels of transcripts accumulated in the germ ring and in the embryonic shield. Towards the end of gastrulation, Id3 was highly expressed in the anterior prechordal plate and hypoblast. At later stages, id3 expression was turned on and off in a large variety of tissues within short periods of time. These include the lateral mesoderm, the cornea, the lens, the brain, the neural crest, the retina and the fins.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Neoplasias , Fatores de Transcrição/biossíntese , Sequência de Aminoácidos , Animais , Northern Blotting , DNA Complementar/metabolismo , Proteínas de Ligação a DNA/genética , Sequências Hélice-Alça-Hélice , Imuno-Histoquímica , Proteínas Inibidoras de Diferenciação , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/metabolismo , Retina/embriologia , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Distribuição Tecidual , Fatores de Transcrição/genética , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA