Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Epilepsia ; 65(7): 2069-2081, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38794998

RESUMO

OBJECTIVE: Focal cooling is emerging as a relevant therapy for drug-resistant epilepsy (DRE). However, we lack data on its effectiveness in controlling seizures that originate in deep-seated areas like the hippocampus. We present a thermoelectric solution for focal brain cooling that specifically targets these brain structures. METHODS: A prototype implantable device was developed, including temperature sensors and a cannula for penicillin injection to create an epileptogenic zone (EZ) near the cooling tip in a non-human primate model of epilepsy. The mesial temporal lobe was targeted with repeated penicillin injections into the hippocampus. Signals were recorded from an sEEG (Stereoelectroencephalography) lead placed 2 mm from the EZ. Once the number of seizures had stabilized, focal cooling was applied, and temperature and electroclinical events were monitored using a customized detection algorithm. Tests were performed on two Macaca fascicularis monkeys at three temperatures. RESULTS: Hippocampal seizures were observed 40-120 min post-injection, their duration and frequency stabilized at around 120 min. Compared to the control condition, a reduction in the number of hippocampal seizures was observed with cooling to 21°C (Control: 4.34 seizures, SD 1.704 per 20 min vs Cooling to 21°C: 1.38 seizures, SD 1.004 per 20 min). The effect was more pronounced with cooling to 17°C, resulting in an almost 80% reduction in seizure frequency. Seizure duration and number of interictal discharges were unchanged following focal cooling. After several months of repeated penicillin injections, hippocampal sclerosis was observed, similar to that recorded in humans. In addition, seizures were identified by detecting temperature variations of 0.3°C in the EZ correlated with the start of the seizures. SIGNIFICANCE: In epilepsy therapy, the ultimate aim is total seizure control with minimal side effects. Focal cooling of the EZ could offer an alternative to surgery and to existing neuromodulation devices.


Assuntos
Modelos Animais de Doenças , Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Hipotermia Induzida , Macaca fascicularis , Animais , Epilepsia do Lobo Temporal/terapia , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia Resistente a Medicamentos/terapia , Epilepsia Resistente a Medicamentos/fisiopatologia , Hipotermia Induzida/métodos , Hipotermia Induzida/instrumentação , Eletroencefalografia , Hipocampo/fisiopatologia , Masculino , Eletrodos Implantados
2.
J Neurooncol ; 152(3): 467-482, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33740164

RESUMO

PURPOSE: Glioblastoma is the most common malignant brain tumor, currently treated by surgery followed by concomitant radiotherapy and temozolomide-based chemotherapy. Despite these treatments, median survival is only 15 months as a result of tumor recurrence in the resection margins. Here, we propose therapeutic hypothermia - known to have neuroprotective effects - as an adjuvant treatment to maintain residual glioblastoma cells in a dormant state, and thus prevent tumor recurrence. METHODS: In vitro experiments were performed on healthy tissue with primary human astrocytes, and four human glioblastoma cell lines: A172, U251, U87, and T98G. We explored the adjuvant potential of moderate hypothermia (28 °C) by studying the reversibility of its inhibitory effects on cell proliferation and comparing them to currently used temozolomide. RESULTS: Moderate hypothermia reduced healthy cell growth, but also inhibited glioblastoma cell proliferation even after rewarming. Indeed, hypothermic preconditioning duration strongly enhanced inhibitory effects from 35% after 3 days to 100% after 30 days. In contrast, moderate (28 °C) and severe (23 °C) preconditioning induced similar results. Finally, moderate hypothermia had more uniform inhibitory effects than temozolomide, which reduced proliferation by between 15% and 95%, and also potentiated the effects of the latter. CONCLUSION: Moderate hypothermia shows promise as an adjuvant therapy for glioblastoma through its inhibition of cell proliferation beyond direct conditioning and potentiation of the effects of chemotherapy. If in vivo preclinical results corroborate our findings, therapeutic hypothermia applied at the resection margins could probably inhibit tumor growth, delay tumor recurrence and reduce inter-patient variability.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Hipotermia Induzida , Hipotermia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Quimioterapia Adjuvante , Glioblastoma/tratamento farmacológico , Humanos , Hipotermia/tratamento farmacológico , Margens de Excisão , Recidiva Local de Neoplasia/tratamento farmacológico , Temozolomida/uso terapêutico
3.
Lancet Neurol ; 18(12): 1112-1122, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31587955

RESUMO

BACKGROUND: Approximately 20% of traumatic cervical spinal cord injuries result in tetraplegia. Neuroprosthetics are being developed to manage this condition and thus improve the lives of patients. We aimed to test the feasibility of a semi-invasive technique that uses brain signals to drive an exoskeleton. METHODS: We recruited two participants at Clinatec research centre, associated with Grenoble University Hospital, Grenoble, France, into our ongoing clinical trial. Inclusion criteria were age 18-45 years, stability of neurological deficits, a need for additional mobility expressed by the patient, ambulatory or hospitalised monitoring, registration in the French social security system, and signed informed consent. The exclusion criteria were previous brain surgery, anticoagulant treatments, neuropsychological sequelae, depression, substance dependence or misuse, and contraindications to magnetoencephalography (MEG), EEG, or MRI. One participant was excluded because of a technical problem with the implants. The remaining participant was a 28-year-old man, who had tetraplegia following a C4-C5 spinal cord injury. Two bilateral wireless epidural recorders, each with 64 electrodes, were implanted over the upper limb sensorimotor areas of the brain. Epidural electrocorticographic (ECoG) signals were processed online by an adaptive decoding algorithm to send commands to effectors (virtual avatar or exoskeleton). Throughout the 24 months of the study, the patient did various mental tasks to progressively increase the number of degrees of freedom. FINDINGS: Between June 12, 2017, and July 21, 2019, the patient cortically controlled a programme that simulated walking and made bimanual, multi-joint, upper-limb movements with eight degrees of freedom during various reach-and-touch tasks and wrist rotations, using a virtual avatar at home (64·0% [SD 5·1] success) or an exoskeleton in the laboratory (70·9% [11·6] success). Compared with microelectrodes, epidural ECoG is semi-invasive and has similar efficiency. The decoding models were reusable for up to approximately 7 weeks without recalibration. INTERPRETATION: These results showed long-term (24-month) activation of a four-limb neuroprosthetic exoskeleton by a complete brain-machine interface system using continuous, online epidural ECoG to decode brain activity in a tetraplegic patient. Up to eight degrees of freedom could be simultaneously controlled using a unique model, which was reusable without recalibration for up to about 7 weeks. FUNDING: French Atomic Energy Commission, French Ministry of Health, Edmond J Safra Philanthropic Foundation, Fondation Motrice, Fondation Nanosciences, Institut Carnot, Fonds de Dotation Clinatec.


Assuntos
Interfaces Cérebro-Computador , Exoesqueleto Energizado , Neuroestimuladores Implantáveis , Estudo de Prova de Conceito , Quadriplegia/reabilitação , Tecnologia sem Fio , Adulto , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/lesões , Vértebras Cervicais/cirurgia , Espaço Epidural/diagnóstico por imagem , Espaço Epidural/cirurgia , Humanos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Masculino , Quadriplegia/diagnóstico por imagem , Quadriplegia/cirurgia , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/cirurgia , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/reabilitação , Traumatismos da Medula Espinal/cirurgia , Tecnologia sem Fio/instrumentação
4.
J Neurooncol ; 144(3): 489-499, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31482266

RESUMO

PURPOSE: Glioblastoma is the most aggressive malignant brain tumor. Despite multimodal treatments, median survival is only 15 months for glioblastoma patients, with tumor recurring in the resection margins after surgical removal. Hypothermia is emerging as an interesting and safe treatment for several conditions. In the context of glioblastoma, we propose that moderate hypothermia could inhibit both cell proliferation and migration, and thus help prevent secondary tumor growth. METHODS: In vitro experiments on A172, U251, U87 and T98G human glioblastoma cell lines explored the effects of severe (23 °C), moderate (28 °C), and mild (33 °C) hypothermia. We further investigated the effects of moderate hypothermia on cell proliferation, migration, morphology, and cell cycle distribution. RESULTS: Similar results were obtained with all four cell lines, indicating a consistent and broad effect of moderate hypothermia. Hypothermia inhibited both cell proliferation and non-oriented migration in a dose-dependent manner, with a significant reduction at 33 °C and almost total arrest at 28 °C. Cell proliferation arrest was long-lasting and oriented cell migration was also reduced at 28 °C. Moreover, moderate hypothermia significantly altered cell cycle distribution, with cells accumulating in the G2/M phase, leading to cell cycle arrest. Lastly, hypothermia at 28 °C also affected cell morphology by deteriorating cell membranes and altering cell shape. CONCLUSIONS: The presented results demonstrate that moderate hypothermia could be a promising adjuvant therapy for glioblastoma treatment as it strongly inhibits both cell proliferation and migration. If in vivo preclinical results corroborate our findings, therapeutic hypothermia applied at the resection margins could probably delay tumor recurrence, combined with current treatments.


Assuntos
Pontos de Checagem do Ciclo Celular , Movimento Celular , Proliferação de Células , Glioblastoma/prevenção & controle , Hipotermia , Apoptose , Glioblastoma/patologia , Humanos , Células Tumorais Cultivadas , Cicatrização
5.
J Neurosurg ; 130(4): 1166-1179, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29749917

RESUMO

OBJECTIVE: Wireless technology is a novel tool for the transmission of cortical signals. Wireless electrocorticography (ECoG) aims to improve the safety and diagnostic gain of procedures requiring invasive localization of seizure foci and also to provide long-term recording of brain activity for brain-computer interfaces (BCIs). However, no wireless devices aimed at these clinical applications are currently available. The authors present the application of a fully implantable and externally rechargeable neural prosthesis providing wireless ECoG recording and direct cortical stimulation (DCS). Prolonged wireless ECoG monitoring was tested in nonhuman primates by using a custom-made device (the ECoG implantable wireless 16-electrode [ECOGIW-16E] device) containing a 16-contact subdural grid. This is a preliminary step toward large-scale, long-term wireless ECoG recording in humans. METHODS: The authors implanted the ECOGIW-16E device over the left sensorimotor cortex of a nonhuman primate (Macaca fascicularis), recording ECoG signals over a time span of 6 months. Daily electrode impedances were measured, aiming to maintain the impedance values below a threshold of 100 KΩ. Brain mapping was obtained through wireless cortical stimulation at fixed intervals (1, 3, and 6 months). After 6 months, the device was removed. The authors analyzed cortical tissues by using conventional histological and immunohistological investigation to assess whether there was evidence of damage after the long-term implantation of the grid. RESULTS: The implant was well tolerated; no neurological or behavioral consequences were reported in the monkey, which resumed his normal activities within a few hours of the procedure. The signal quality of wireless ECoG remained excellent over the 6-month observation period. Impedance values remained well below the threshold value; the average impedance per contact remains approximately 40 KΩ. Wireless cortical stimulation induced movements of the upper and lower limbs, and elicited fine movements of the digits as well. After the monkey was euthanized, the grid was found to be encapsulated by a newly formed dural sheet. The grid removal was performed easily, and no direct adhesions of the grid to the cortex were found. Conventional histological studies showed no cortical damage in the brain region covered by the grid, except for a single microscopic spot of cortical necrosis (not visible to the naked eye) in a region that had undergone repeated procedures of electrical stimulation. Immunohistological studies of the cortex underlying the grid showed a mild inflammatory process. CONCLUSIONS: This preliminary experience in a nonhuman primate shows that a wireless neuroprosthesis, with related long-term ECoG recording (up to 6 months) and multiple DCSs, was tolerated without sequelae. The authors predict that epilepsy surgery could realize great benefit from this novel prosthesis, providing an extended time span for ECoG recording.

7.
Soft Matter ; 12(29): 6232-9, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27377831

RESUMO

It is now well established that the mechanical environment of the cells in tissues deeply impacts cellular fate, including life cycle, differentiation and tumor progression. Designs of biomaterials already include the control of mechanical parameters, and in general, their main focus is to control the rheological properties of the biomaterials at a macroscopic scale. However, recent studies have demonstrated that cells can stress their environment below the micron scale, and therefore could possibly respond to the rheological properties of their environment at this micron scale. In this context, probing the mechanical properties of physiological cellular environments at subcellular scales is becoming critical. To this aim, we performed in vitro indentation measurements using AFM on sliced human pituitary gland tissues. A robust methodology was implemented using elasto-adhesive models, which shows that accounting for the adhesion of the probe on the tissue is critical for the reliability of the measurement. In addition to quantifying for the first time the rigidity of normal pituitary gland tissue, with a geometric mean of 9.5 kPa, our measurements demonstrated that the mechanical properties of this tissue are far from uniform at subcellular scales. Gradients of rigidity as large as 12 kPa µm(-1) were observed. This observation suggests that physiological rigidity can be highly non-uniform at the micron-scale.


Assuntos
Encéfalo/fisiologia , Módulo de Elasticidade , Microscopia de Força Atômica , Hipófise/fisiologia , Humanos
9.
J Neurooncol ; 128(1): 1-8, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26961772

RESUMO

Surgery is the first line therapy for glioma. However, glioma recurs in 90 % of the patients in the resection margin. The impact of surgical brain injury (SBI) on glioma recurrence is largely overlooked. Herein, we review some of the mechanisms involved in tissue repair that may impact glioma recurrence at the resection margin. Many processes or molecules involved in tissue repair after brain injury are also critical for glioma growth. They include a wide array of secreted growth factors, cytokines and transcription factors including NFКB and STAT3 which in turn activate proliferative and anti-apoptotic genes and processes such as angiogenesis and inflammation. Because some residual glioma cells always remain in the tumor resection margin, there are now compelling arguments to suggest that some aspects of the brain tissue response to SBI can also participate to glioma recurrence at the resection margin. Brain tissue response to SBI recruits angiogenesis and inflammation that precede and then follow tumor recurrence at the resection margin. The healing response to SBI is double edged, as inflammation is involved in regeneration and healing, and has both pro- and anti-tumorigenic functions. A promising therapeutic approach is to normalize and re-educate the molecular and cellular responses at the resection margin to promote anti-tumorigenic processes involved in healing while inhibiting pro-tumorigenic activities. Manipulation of the inflammatory response to SBI to prevent local recurrence could also enhance the efficacy of other therapies such as immunotherapy. However, our current knowledge is far from sufficient to achieve this goal. Acknowledging, understanding and manipulating the double-edged role played by SBI in glioma recurrence is surely challenging, but it cannot be longer delayed.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/cirurgia , Encéfalo/metabolismo , Encéfalo/cirurgia , Glioma/metabolismo , Glioma/cirurgia , Humanos , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/prevenção & controle , Procedimentos Neurocirúrgicos/efeitos adversos
10.
IEEE Trans Neural Syst Rehabil Eng ; 23(1): 10-21, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25014960

RESUMO

A wireless 64-channel ElectroCorticoGram (ECoG) recording implant named WIMAGINE has been designed for various clinical applications. The device is aimed at interfacing a cortical electrode array to an external computer for neural recording and control applications. This active implantable medical device is able to record neural activity on 64 electrodes with selectable gain and sampling frequency, with less than 1 µV(RMS) input referred noise in the [0.5 Hz - 300 Hz] band. It is powered remotely through an inductive link at 13.56 MHz which provides up to 100 mW. The digitized data is transmitted wirelessly to a custom designed base station connected to a PC. The hermetic housing and the antennae have been designed and optimized to ease the surgery. The design of this implant takes into account all the requirements of a clinical trial, in particular safety, reliability, and compliance with the regulations applicable to class III AIMD. The main features of this WIMAGINE implantable device and its architecture are presented, as well as its functional performances and long-term biocompatibility results.


Assuntos
Eletroencefalografia/instrumentação , Tecnologia sem Fio/instrumentação , Animais , Interfaces Cérebro-Computador , Eletrodos Implantados , Eletrônica , Desenho de Equipamento , Humanos , Macaca fascicularis , Macaca mulatta , Teste de Materiais , Próteses Neurais , Processamento de Sinais Assistido por Computador , Software
11.
J Neurosurg ; 120(3): 670-83, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24160475

RESUMO

OBJECT: Previous experimental studies have documented the neuroprotection of damaged or diseased cells after applying, from outside the brain, near-infrared light (NIr) to the brain by using external light-emitting diodes (LEDs) or laser devices. In the present study, the authors describe an effective and reliable surgical method of applying to the brain, from inside the brain, NIr to the brain. They developed a novel internal surgical device that delivers the NIr to brain regions very close to target damaged or diseased cells. They suggest that this device will be useful in applying NIr within the large human brain, particularly if the target cells have a very deep location. METHODS: An optical fiber linked to an LED or laser device was surgically implanted into the lateral ventricle of BALB/c mice or Sprague-Dawley rats. The authors explored the feasibility of the internal device, measured the NIr signal through living tissue, looked for evidence of toxicity at doses higher than those required for neuroprotection, and confirmed the neuroprotective effect of NIr on dopaminergic cells in the substantia nigra pars compacta (SNc) in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson disease in mice. RESULTS: The device was stable in freely moving animals, and the NIr filled the cranial cavity. Measurements showed that the NIr intensity declined as distance from the source increased across the brain (65% per mm) but was detectable up to 10 mm away. At neuroprotective (0.16 mW) and much higher (67 mW) intensities, the NIr caused no observable behavioral deficits, nor was there evidence of tissue necrosis at the fiber tip, where radiation was most intense. Finally, the intracranially delivered NIr protected SNc cells against MPTP insult; there were consistently more dopaminergic cells in MPTP-treated mice irradiated with NIr than in those that were not irradiated. CONCLUSIONS: In summary, the authors showed that NIr can be applied intracranially, does not have toxic side effects, and is neuroprotective.


Assuntos
Neurônios Dopaminérgicos/efeitos da radiação , Luz , Transtornos Parkinsonianos/terapia , Fototerapia/métodos , Animais , Sobrevivência Celular/efeitos da radiação , Modelos Animais de Doenças , Neurônios Dopaminérgicos/citologia , Estudos de Viabilidade , Raios Infravermelhos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Procedimentos Neurocirúrgicos/métodos , Fibras Ópticas , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/cirurgia , Fototerapia/efeitos adversos , Fototerapia/instrumentação , Ratos , Ratos Sprague-Dawley
12.
Cytokine ; 61(1): 104-11, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23063000

RESUMO

Neovastat® is a standardized extract of marine cartilage, an avascular tissue, which contains many biologically active molecules and has multiple antiangiogenic properties. In addition to VEGFR2 and MMPs inhibition, shark cartilage extract (SCE) has recently been shown to induce tissue plasminogen activator gene (PLAT) expression in bovine endothelial cells in a TNF like manner, by inducing the typical mediators NF-κB and JNK. There is now compelling evidences that the NF-κB and JNK pathways are activated by cytokines induced generation of reactive oxygen species (ROS). We used macroarray genes expression analysis on human umbilical vein endothelial cells, to investigate if that mechanism could mediate the effect of SCE. Transcriptomic results showed that SCE induced expression of several cytokines. Their impact must be important, given that treatment of endothelial cells with the cytokine TNF-α was able to reproduce most of the effects of cartilage extract on genes expression. In addition, most of the genes, known to be inducible by NF-κB or JNK following cytokines stimulation, were less induced by SCE when endothelial cells were pretreated with the antioxidant N-Acetylcysteine (NAC), suggesting a role of ROS in endothelial cell activation by SCE. Finally, the possible effects of PLAT, PLG, SELE, IL8 and PRDX2 (those validated by q-PCR) on angiogenesis, will also be discussed.


Assuntos
Citocinas/metabolismo , Selectina E/biossíntese , Plasminogênio/biossíntese , Extratos de Tecidos/farmacologia , Ativador de Plasminogênio Tecidual/biossíntese , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Células Cultivadas , Citocinas/biossíntese , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Espécies Reativas de Oxigênio/metabolismo , Extratos de Tecidos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
13.
Int J Oncol ; 38(5): 1287-97, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21318223

RESUMO

Tumor invasion or infiltration of adjacent tissues is the source of clinical challenges in diagnosis as well as prevention and treatment. Among brain tumors, infiltration of the adjacent tissues with diverse pleiotropic mechanisms is frequently encountered in benign meningiomas. We assessed whether a multiparametric analysis of meningiomas based on data from both clinical observations and molecular analyses could provide a consistent and accurate appraisal of invasive and infiltrative phenotypes and help determine the diagnosis of these tumors. Tissue analyses of 37 meningiomas combined enzyme-linked immunosorbent assay (ELISA) and surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) assays of two different protein biomarkers (thrombospondin 1 and a phosphorylated form of vimentin) as well as gene expression analyses with oligonucleotide micro-arrays. Up to four different clinical and molecular parameters were then examined for tumor classification. From this study, we were able to cluster 36 out of the 37 tumors into two different subsets corresponding to infiltrative/invasive and non-infiltrative tumors. In addition, meningiomas that invade brain and those that infiltrate the neighboring skull bone exhibited no distinguishable molecular features. Our multi-parameter analysis that combines clinical data, transcriptomic and molecular assays clearly reveals the heterogeneity of meningiomas and distinguishes the intrinsically infiltrative/invasive tumors from the non-infiltrative meningiomas.


Assuntos
Neoplasias Meníngeas/patologia , Meningioma/patologia , Adulto , Idoso , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Neoplasias Meníngeas/química , Neoplasias Meníngeas/metabolismo , Meningioma/química , Meningioma/metabolismo , Pessoa de Meia-Idade , Fenótipo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Trombospondina 1/análise
14.
Thromb Haemost ; 99(3): 576-85, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18327407

RESUMO

Tissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease inhibitor that is mainly known for its inhibition of tissue factor-mediated coagulation. In addition to its anticoagulant properties, emerging data show that TFPI may also regulate endothelial cell functions via a non-haemostatic pathway. In this work we demonstrate that at concentrations within the physiological range, TFPI inhibits both endothelial cell migration and their differentiation into capillary-like structures in vitro. These effects were specific to endothelial cells since no inhibitory effect was observed on the migration of tumor (glioblastoma) cells. Inhibition of endothelial cell migration was correlated with a concomitant loss in cell adhesion, suggesting an alteration of focal adhesion complex integrity. Accordingly, we observed that TFPI inhibited the phosphorylation of focal adhesion kinase and paxillin, two key proteins involved in the scaffolding of these complexes, and that this effect was specific to endothelial cells. These results suggest that TFPI influences the angiogenic process via a non-haemostatic pathway, by downregulating the migratory mechanisms of endothelial cells.


Assuntos
Proteínas Angiogênicas/metabolismo , Movimento Celular , Células Endoteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Lipoproteínas/metabolismo , Neovascularização Fisiológica , Paxilina/metabolismo , Proteínas Angiogênicas/isolamento & purificação , Proteínas Angiogênicas/farmacologia , Adesão Celular , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Forma Celular , Células Cultivadas , Clonagem Molecular , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Humanos , Lipoproteínas/isolamento & purificação , Lipoproteínas/farmacologia , Lisofosfolipídeos/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Fosforilação , Proteínas Recombinantes/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
15.
Thromb Res ; 121(2): 203-12, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17512973

RESUMO

Proteolysis of fibrin matrices by endothelial cells plays essential roles in the migratory and morphogenic differentiation processes underlying angiogenesis. Using an in vitro fibrinolysis model consisting of human umbilical vein endothelial cells (HUVECs) embedded in a three dimensional fibrin matrix, we show that VEGF, an angiogenic cytokine that plays a crucial role in the onset of angiogenesis, is a potent activator of HUVEC-mediated fibrinolysis. This VEGF-dependent fibrin degradation was completely abrogated by inhibitors of either the plasminogen activator/plasmin or matrix metalloproteinases (MMP) proteolytic systems, suggesting the involvement of both classes of proteases in fibrin degradation. Accordingly, VEGF-induced fibrinolysis correlated with an increase in the expression of tPA and of some MMPs, such as MT2-MMP and was completely blocked by a neutralizing antibody against tPA. Overall, these results indicate that efficient proteolysis of three dimensional fibrin matrices during VEGF-mediated angiogenesis involves a complex interplay between the MMP and plasmin-mediated proteolytic systems.


Assuntos
Indutores da Angiogênese/farmacologia , Endotélio Vascular/efeitos dos fármacos , Fibrinólise/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/metabolismo , Fibrina/metabolismo , Humanos , Metaloproteinases da Matriz/biossíntese , Neovascularização Fisiológica/efeitos dos fármacos , Ativador de Plasminogênio Tecidual/biossíntese , Regulação para Cima , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese
16.
Clin Chem ; 52(11): 2103-6, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16990423

RESUMO

BACKGROUND: New molecular profiling technologies can aid in analysis of small pathologic samples obtained by minimally invasive biopsy and may enable the discovery of key biomarkers synergistic with anatomopathologic analysis related to prognosis, therapeutic response, and innovative target validation. Thus proteomic analysis at the histologic level in healthy and pathologic settings is a major issue in the field of clinical proteomics. METHODS: We used surface-enhanced laser desorption ionization-time-of-flight mass spectrometry (SELDI-TOF MS) technology with surface chromatographic subproteome enrichment and preservation of the spatial distribution of proteomic patterns to detect discrete modifications of protein expression. We performed in situ proteomic profiling of mouse tissue and samples of human cancer tissue, including brain and lung cancer. RESULTS: This approach permitted the discrimination of glioblastomas from oligodendrogliomas and led to the identification of 3 potential markers. CONCLUSION: Direct tissue proteomic analysis is an original application of SELDI-TOF MS technology that can expand the use of clinical proteomics as a complement to the anatomopathological diagnosis.


Assuntos
Biomarcadores/análise , Neoplasias do Sistema Nervoso Central/química , Glioblastoma/química , Oligodendroglioma/química , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Neoplasias do Sistema Nervoso Central/diagnóstico , Glioblastoma/diagnóstico , Humanos , Camundongos , Oligodendroglioma/diagnóstico , Especificidade de Órgãos
17.
Thromb Res ; 115(1-2): 143-52, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15567466

RESUMO

Fibrinogen and fibrin are molecules with overlapping roles in blood clotting, fibrinolysis, wound healing, inflammation, matrix and cellular interactions and neoplasia. There is currently much interest in the possible use of fibrinolytic agents in human therapeutics. In this study, we report the presence of fibrinolytic activities in shark cartilage extract (SCE). In vitro, SCE at 100 microg/ml completely degraded fibrin gel in an aprotinin-insensitive manner, suggesting a non-plasmin molecular nature. SCE was able to cleave all chains of fibrinogen and fibrin and the cleavage was completely inhibited by 1,10-phenanthroline, suggesting an essential role for metalloprotease(s) in this process. Using fibrinogen zymography, we show that SCE contains two plasmin-independent fibrinolytic activities and that these activities are correlated with the presence of 58 and 62 kDa proteases in the extract. SCE-fibrinolytic activities are inhibited by dithiothreitol, suggesting that disulfide bonds are necessary for the protease structure. Finally, using thromboelastography, SCE markedly induced retraction of human platelet-rich plasma (PRP) clot, this process being completely abolished by 1,10-phenanthroline. These data suggest the presence of novel non-plasmin fibrinolytic activities within SCE. This extract may thus represent a potential source of new therapeutic molecules to prevent and treat vaso-occlusive and thromboembolic disorders.


Assuntos
Cartilagem/enzimologia , Enzimas/farmacologia , Fibrinolíticos/isolamento & purificação , Tubarões , Animais , Extratos Celulares , Retração do Coágulo/efeitos dos fármacos , Dissulfetos , Enzimas/isolamento & purificação , Enzimas/metabolismo , Fibrina/metabolismo , Fibrinogênio/metabolismo , Fibrinolisina/farmacologia , Fibrinolíticos/farmacologia , Humanos , Metaloproteases , Peso Molecular , Doenças Vasculares/tratamento farmacológico
18.
Arch Biochem Biophys ; 431(2): 197-206, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15488468

RESUMO

We have recently shown that Neovastat, an antiangiogenic extract from shark cartilage, stimulates the in vitro activation of plasminogen by facilitating the tissue-type plasminogen activator (tPA)-dependent conversion of plasminogen to plasmin. In this report, we describe the purification and characterization of the stimulatory molecules. Neovastat was subjected to a three-step purification procedure including gel filtration, preparative isoelectric focusing, and preparative SDS-PAGE. Two 28-kDa proteins with pIs of approximately 4.5 and 6.5 were purified to apparent homogeneity and identified as immunoglobulin (Ig) kappa light chains by N-terminal microsequencing. Ig light chains do not directly stimulate the activity of tPA or plasmin, suggesting a mechanism of action involving an interaction with plasminogen. Kinetic analysis showed that both Ig light chains accelerate the in vitro tPA-dependent conversion of plasminogen in plasmin by increasing the affinity of tPA for plasminogen by 32- and 38-fold (Km decrease from 456 nM to 12-14 nM). Shark Ig light chains also stimulated the degradation of fibrin by the tPA/plasminogen system in an in vitro assay. A direct interaction between Ig light chains and plasminogen (KA=4.0-5.5 x 10(7) M(-1); KD=18-25 nM) and with tPA (KA=2.8 x 10(7) M(-1); KD=36 nM) was demonstrated using real time binding measured by surface plasmon resonance. Ig light chain is the first molecule associated with the antiangiogenic activity of Neovastat to be purified and identified.


Assuntos
Inibidores da Angiogênese/química , Fibrinolisina/biossíntese , Cadeias kappa de Imunoglobulina/química , Cadeias kappa de Imunoglobulina/isolamento & purificação , Extratos de Tecidos/química , Sequência de Aminoácidos , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Fibrina/metabolismo , Cadeias kappa de Imunoglobulina/metabolismo , Focalização Isoelétrica , Ponto Isoelétrico , Cinética , Dados de Sequência Molecular , Peso Molecular , Plasminogênio/metabolismo , Análise de Sequência de Proteína , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA