Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 11635, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669636

RESUMO

Tuberculosis is a highly infectious and potentially fatal disease accompanied by wasting symptoms, which cause severe metabolic changes in infected people. In this study we have compared the effect of mycobacteria infection on the level of metabolites in blood of humans and mice and whole zebrafish larvae using one highly standardized mass spectrometry pipeline, ensuring technical comparability of the results. Quantification of a range of circulating small amines showed that the levels of the majority of these compounds were significantly decreased in all three groups of infected organisms. Ten of these metabolites were common between the three different organisms comprising: methionine, asparagine, cysteine, threonine, serine, tryptophan, leucine, citrulline, ethanolamine and phenylalanine. The metabolomic changes of zebrafish larvae after infection were confirmed by nuclear magnetic resonance spectroscopy. Our study identified common biomarkers for tuberculosis disease in humans, mice and zebrafish, showing across species conservation of metabolic reprogramming processes as a result of disease. Apparently, the mechanisms underlying these processes are independent of environmental, developmental and vertebrate evolutionary factors. The zebrafish larval model is highly suited to further investigate the mechanism of metabolic reprogramming and the connection with wasting syndrome due to infection by mycobacteria.


Assuntos
Aminas/análise , Glucose/metabolismo , Tuberculose/metabolismo , Peixe-Zebra/metabolismo , Aminas/química , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Humanos , Larva/metabolismo , Larva/microbiologia , Análise dos Mínimos Quadrados , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium marinum , Mycobacterium tuberculosis , Peixe-Zebra/microbiologia
2.
Anal Chem ; 86(20): 10323-30, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25243401

RESUMO

In the field of bioanalysis, there is an increasing demand for miniaturized, automated, robust sample pretreatment procedures that can be easily connected to direct-infusion mass spectrometry (DI-MS) in order to allow the high-throughput screening of drugs and/or their metabolites in complex body fluids like plasma. Liquid-Liquid extraction (LLE) is a common sample pretreatment technique often used for complex aqueous samples in bioanalysis. Despite significant developments that have been made in automated and miniaturized LLE procedures, fully automated LLE techniques allowing high-throughput bioanalytical studies on small-volume samples using direct infusion mass spectrometry, have not been matured yet. Here, we introduce a new fully automated micro-LLE technique based on gas-pressure assisted mixing followed by passive phase separation, coupled online to nanoelectrospray-DI-MS. Our method was characterized by varying the gas flow and its duration through the solvent mixture. For evaluation of the analytical performance, four drugs were spiked to human plasma, resulting in highly acceptable precision (RSD down to 9%) and linearity (R(2) ranging from 0.990 to 0.998). We demonstrate that our new method does not only allow the reliable extraction of analytes from small sample volumes of a few microliters in an automated and high-throughput manner, but also performs comparable or better than conventional offline LLE, in which the handling of small volumes remains challenging. Finally, we demonstrate the applicability of our method for drug screening on dried blood spots showing excellent linearity (R(2) of 0.998) and precision (RSD of 9%). In conclusion, we present the proof of principe of a new high-throughput screening platform for bioanalysis based on a new automated microLLE method, coupled online to a commercially available nano-ESI-DI-MS.


Assuntos
Bioensaio/métodos , Cromatografia Líquida , Gases/química , Espectrometria de Massas , Pressão , Automação , Bioensaio/instrumentação , Teste em Amostras de Sangue Seco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA