Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 12444, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858934

RESUMO

Genetic biofortification is recognized as a cost-effective and sustainable strategy to reduce micronutrient malnutrition. Genomic regions governing grain iron concentration (GFeC), grain zinc concentration (GZnC), and thousand kernel weight (TKW) were investigated in a set of 280 diverse bread wheat genotypes. The genome-wide association (GWAS) panel was genotyped using 35 K Axiom Array and phenotyped in five environments. The GWAS analysis showed a total of 17 Bonferroni-corrected marker-trait associations (MTAs) in nine chromosomes representing all the three wheat subgenomes. The TKW showed the highest MTAs (7), followed by GZnC (5) and GFeC (5). Furthermore, 14 MTAs were identified with more than 10% phenotypic variation. One stable MTA i.e. AX-95025823 was identified for TKW in both E4 and E5 environments along with pooled data, which is located at 68.9 Mb on 6A chromosome. In silico analysis revealed that the SNPs were located on important putative candidate genes such as Multi antimicrobial extrusion protein, F-box domain, Late embryogenesis abundant protein, LEA-18, Leucine-rich repeat domain superfamily, and C3H4 type zinc finger protein, involved in iron translocation, iron and zinc homeostasis, and grain size modifications. The identified novel MTAs will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection. The identified SNPs will be valuable in the rapid development of biofortified wheat varieties to ameliorate the malnutrition problems.


Assuntos
Desnutrição , Triticum , Grão Comestível/metabolismo , Estudo de Associação Genômica Ampla , Ferro/metabolismo , Desnutrição/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Triticum/genética , Zinco/metabolismo
2.
Front Genet ; 12: 652653, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194467

RESUMO

The development of nutritionally enhanced wheat (Triticum aestivum L.) with higher levels of grain iron (Fe) and zinc (Zn) offers a sustainable solution to micronutrient deficiency among resource-poor wheat consumers. One hundred and ninety recombinant inbred lines (RILs) from 'Kachu' × 'Zinc-Shakti' cross were phenotyped for grain Fe and Zn concentrations and phenological and agronomically important traits at Ciudad Obregon, Mexico in the 2017-2018, 2018-2019, and 2019-2020 growing seasons and Diversity Arrays Technology (DArT) molecular marker data were used to determine genomic regions controlling grain micronutrients and agronomic traits. We identified seven new pleiotropic quantitative trait loci (QTL) for grain Zn and Fe on chromosomes 1B, 1D, 2B, 6A, and 7D. The stable pleiotropic QTL identified have expanded the diversity of QTL that could be used in breeding for wheat biofortification. Nine RILs with the best combination of pleiotropic QTL for Zn and Fe have been identified to be used in future crossing programs and to be screened in elite yield trials before releasing as biofortified varieties. In silico analysis revealed several candidate genes underlying QTL, including those belonging to the families of the transporters and kinases known to transport small peptides and minerals (thus assisting mineral uptake) and catalyzing phosphorylation processes, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA