Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 10(2)2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862744

RESUMO

Multidrug-resistant (MDR) Acinetobacter spp. poses a significant therapeutic challenge in part due to the presence of chromosomally encoded ß-lactamases, including class C Acinetobacter-derived cephalosporinases (ADC) and class D oxacillinases (OXA), as well as plasmid-mediated class A ß-lactamases. Importantly, OXA-like ß-lactamases represent a gap in the spectrum of inhibition by recently approved ß-lactamase inhibitors such as avibactam and vaborbactam. ETX2514 is a novel, rationally designed, diazabicyclooctenone inhibitor that effectively targets class A, C, and D ß-lactamases. We show that addition of ETX2514 significantly increased the susceptibility of clinical Acinetobacterbaumannii isolates to sulbactam. AdeB and AdeJ were identified to be key efflux constituents for ETX2514 in A. baumannii The combination of sulbactam and ETX2514 was efficacious against A. baumannii carrying blaTEM-1, blaADC-82, blaOXA-23, and blaOXA-66 in a neutropenic murine thigh infection model. We also show that, in vitro, ETX2514 inhibited ADC-7 (k2/Ki 1.0 ± 0.1 × 106 M-1 s-1) and OXA-58 (k2/Ki 2.5 ± 0.3 × 105 M-1 s-1). Cocrystallization of ETX2514 with OXA-24/40 revealed hydrogen bonding interactions between ETX2514 and residues R261, S219, and S128 of OXA-24/40 in addition to a chloride ion occupied in the active site. Further, the C3 methyl group of ETX2514 shifts the position of M223. In conclusion, the sulbactam-ETX2514 combination possesses a broadened inhibitory range to include class D ß-lactamases as well as class A and C ß-lactamases and is a promising therapeutic candidate for infections caused by MDR Acinetobacter spp.IMPORTANCE The number and diversity of ß-lactamases are steadily increasing. The emergence of ß-lactamases that hydrolyze carbapenems poses a significant threat to our antibiotic armamentarium. The explosion of OXA enzymes that are carbapenem hydrolyzers is a major challenge (carbapenem-hydrolyzing class D [CHD]). An urgent need exists to discover ß-lactamase inhibitors with class D activity. The sulbactam-ETX2514 combination demonstrates the potential to become a treatment regimen of choice for Acinetobacter spp. producing class D ß-lactamases.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/administração & dosagem , Compostos Azabicíclicos/administração & dosagem , Sulbactam/administração & dosagem , Inibidores de beta-Lactamases/administração & dosagem , Infecções por Acinetobacter/microbiologia , Animais , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Cristalografia por Raios X , Modelos Animais de Doenças , Camundongos , Ligação Proteica , Conformação Proteica , Sulbactam/farmacologia , Resultado do Tratamento , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química , beta-Lactamases/metabolismo
2.
mSphere ; 3(4)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111627

RESUMO

Heteroresistance is a phenomenon where a subpopulation of cells exhibits higher levels of antibiotic resistance than the general population. Analysis of tobramycin resistance in Acinetobacter baumannii AB5075 using Etest strips demonstrated that colonies with increased resistance arose at high frequency within the zone of growth inhibition. The presence of a resistant subpopulation was confirmed by population analysis profiling (PAP). The tobramycin-resistant subpopulation was cross resistant to gentamicin but not amikacin. The increased tobramycin resistance phenotype was highly unstable, and cells reverted to a less resistant population at frequencies of 60 to 90% after growth on nonselective media. Furthermore, the frequency of the resistant subpopulation was not increased by preincubation with subinhibitory concentrations of tobramycin. The tobramycin-resistant subpopulation was shown to replicate during the course of antibiotic treatment, demonstrating that these were not persister cells. In A. baumannii AB5075, a large plasmid (p1AB5075) carries aadB, a 2″-nucleotidyltransferase that confers resistance to both tobramycin and gentamicin but not amikacin. The aadB gene is part of an integron and is carried adjacent to four additional resistance genes that are all flanked by copies of an integrase gene. In isolates with increased resistance, this region was highly amplified in a RecA-dependent manner. However, in a recA mutant, colonies with unstable tobramycin resistance arose by a mechanism that did not involve amplification of this region. These data indicate that tobramycin heteroresistance occurs by at least two mechanisms in A. baumannii, and future studies to determine its effect on patient outcomes are warranted.IMPORTANCEAcinetobacter baumannii has become an important pathogen in hospitals worldwide, where the incidence of these infections has been increasing. A. baumannii infections have become exceedingly difficult to treat due to a rapid increase in the frequency of multidrug- and pan-resistant isolates. This has prompted the World Health Organization to list A. baumannii as the top priority for the research and development of new antibiotics. This study reports for the first time a detailed analysis of aminoglycoside heteroresistance in A. baumannii We define the mechanistic basis for heteroresistance, where the aadB(ant2″)Ia gene encoding an aminoglycoside adenylyltransferase becomes highly amplified in a RecA-dependent manner. Remarkably, this amplification of 20 to 40 copies occurs stochastically in 1/200 cells in the absence of antibiotic selection. In addition, we provide evidence for a second RecA-independent mechanism for aminoglycoside heteroresistance. This study reveals that aminoglycoside resistance in A. baumannii is far more complex than previously realized and has important implications for the use of aminoglycosides in treating A. baumannii infections.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Amicacina/farmacologia , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Gentamicinas/farmacologia , Humanos , Integrons , Nucleotidiltransferases/genética , Plasmídeos , Tobramicina/farmacologia
3.
J Bacteriol ; 190(6): 1946-55, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18192389

RESUMO

In this study, we describe wosA, a Proteus mirabilis gene identified by its ability to increase swarming motility when overexpressed. At various times during the swarming cycle, the increased expression of wosA resulted in a 4- to 16-fold upregulation of the transcription of flhDC, encoding the master regulator of the flagellar cascade. In turn, the expression of flaA, encoding flagellin, was substantially increased in wosA-overexpressing strains. The overexpression of wosA also resulted in constitutive swarmer cell differentiation in liquid medium, a normally nonpermissive condition. However, in wosA-overexpressing strains, the onset of swarming was not altered. A null wosA allele resulted in a slight decrease in swarming motility. The expression of wosA was growth phase dependent during growth in liquid and on agar plates during swarmer cell differentiation. Increasing the viscosity of liquid medium by the addition of polyvinylpyrrolidone induced swarmer cell differentiation and resulted in a fourfold increase in wosA transcription. A fliL mutation that results in constitutive swarmer cell elongation also increased wosA transcription. In this study, we discuss the possible role of the wosA gene product in signal transduction from solid surfaces to induce swarmer cell differentiation, possibly via alterations in the motor switch complex. This study also suggests that despite constitutive swarmer cell differentiation in wosA-overexpressing strains, there are additional regulatory and/or environmental conditions that may control the onset of swarming migration.


Assuntos
Proteínas de Bactérias/genética , Óperon/genética , Proteus mirabilis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Northern Blotting , Flagelos/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação , Povidona/farmacologia , Proteus mirabilis/crescimento & desenvolvimento , Proteus mirabilis/metabolismo , Transcrição Gênica/efeitos dos fármacos
4.
J Bacteriol ; 188(9): 3415-9, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16621838

RESUMO

The Providencia stuartii AarA protein is a member of the rhomboid family of intramembrane serine proteases and required for the production of an extracellular signaling molecule that regulates cellular functions including peptidoglycan acetylation, methionine transport, and cysteine biosynthesis. Additional aarA-dependent phenotypes include (i) loss of an extracellular yellow pigment, (ii) inability to grow on MacConkey agar, and (iii) abnormal cell division. Since these phenotypes are easily assayed, the P. stuartii aarA mutant serves as a useful host system to investigate rhomboid function. The Escherichia coli GlpG protein was shown to be functionally similar to AarA and rescued the above aarA-dependent phenotypes in P. stuartii. GlpG proteins containing single alanine substitutions at the highly conserved catalytic triad of asparagine (N154A), serine (S201A), or histidine (H254A) residues were nonfunctional. The P. stuartii aarA mutant was also used as a biosensor to demonstrate that proteins from a variety of diverse sources exhibited rhomboid activity. In an effort to further investigate the role of a rhomboid protein in cell physiology, a glpG mutant of E. coli was constructed. In phenotype microarray experiments, the glpG mutant exhibited a slight increase in resistance to the beta-lactam antibiotic cefotaxime.


Assuntos
Proteínas de Bactérias/genética , Técnicas Biossensoriais/métodos , Proteínas de Ligação a DNA/genética , Endopeptidases/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Providencia/genética , Proteínas Repressoras/genética , Ágar , Antibacterianos/farmacologia , Cefotaxima/farmacologia , Divisão Celular , Proteínas de Ligação a DNA/fisiologia , Resistência a Medicamentos , Endopeptidases/fisiologia , Proteínas de Escherichia coli/fisiologia , Proteínas de Membrana/fisiologia , Mutação , Pigmentos Biológicos/biossíntese , Providencia/efeitos dos fármacos , Providencia/fisiologia , Recombinação Genética , Serina Endopeptidases/metabolismo
5.
J Bacteriol ; 186(22): 7610-7, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15516574

RESUMO

A mini-Tn5Cm insertion has been identified that significantly reduced the amount of an extracellular activating signal for a lacZ fusion (cma37::lacZ) in Providencia stuartii. The transposon insertion was located immediately upstream of an open reading frame encoding a putative CysE ortholog. The CysE enzyme, serine acetyltransferase, catalyzes the conversion of serine to O-acetyl-L-serine (OAS). This activating signal was also produced by Escherichia coli, and production was abolished in a strain containing a null allele of cysE. Products of the CysE enzyme (OAS, N-acetyl-L-serine [NAS], O-acetyl-L-threonine, and N-acetyl-L-threonine) were individually tested for the ability to activate cma37::lacZ. Only OAS was capable of activating the cma37::lacZ fusion. The ability of OAS to activate the cma37::lacZ fusion was abolished by pretreatment at pH 8.5, which converts OAS to NAS. However, the activity of the native signal in conditioned medium was not decreased by treatment at pH 8.5. In contrast, conditioned medium prepared from cells grown at pH 8.5 exhibited a 4- to 10-fold-higher activity, relative to pH 6.0. Additional genes regulated by the CysE-dependent signal and OAS were identified in P. stuartii and E. coli. The response to the extracellular signal in E. coli was dependent on CysB, a positive activator that requires NAS as a coactivator. In E. coli, a cysE mutant formed biofilms at an accelerated rate compared to the wild type, suggesting a physiological role for this extracellular signal.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica , Providencia/enzimologia , Transdução de Sinais , Meios de Cultura , Cisteína/metabolismo , Proteínas de Escherichia coli , Mutação , Serina O-Acetiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA