Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39229154

RESUMO

Somatic activating mutations in PIK3CA are common drivers of vascular and lymphatic malformations. Despite common biophysical signatures of tissues susceptible to lesion formation, including compliant extracellular matrix and low rates of perfusion, lesions vary in clinical presentation from localized cystic dilatation to diffuse and infiltrative vascular dysplasia. The mechanisms driving the differences in disease severity and variability in clinical presentation and the role of the biophysical microenvironment in potentiating progression are poorly understood. Here, we investigate the role of hemodynamic forces and the biophysical microenvironment in the pathophysiology of vascular malformations, and we identify hemodynamic shear stress and defective endothelial cell mechanotransduction as key regulators of lesion progression. We found that constitutive PI3K activation impaired flow-mediated endothelial cell alignment and barrier function. We show that defective shear stress sensing in PIK3CA E542K endothelial cells is associated with reduced myosin light chain phosphorylation, junctional instability, and defective recruitment of vinculin to cell-cell junctions. Using 3D microfluidic models of the vasculature, we demonstrate that PIK3CA E542K microvessels apply reduced traction forces and are unaffected by flow interruption. We further found that draining transmural flow resulted in increased sprouting and invasion responses in PIK3CA E542K microvessels. Mechanistically, constitutive PI3K activation decreased cellular and nuclear elasticity resulting in defective cellular tensional homeostasis in endothelial cells which may underlie vascular dilation, tissue hyperplasia, and hypersprouting in PIK3CA-driven venous and lymphatic malformations. Together, these results suggest that defective nuclear mechanics, impaired cellular mechanotransduction, and maladaptive hemodynamic responses contribute to the development and progression of PIK3CA-driven vascular malformations.

2.
Nat Commun ; 15(1): 4170, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755186

RESUMO

Endothelial cells are a heterogeneous population with various organ-specific and conserved functions that are critical to organ development, function, and regeneration. Here we report a Sox17-Erg direct reprogramming approach that uses cardiac fibroblasts to create differentiated endothelial cells that demonstrate endothelial-like molecular and physiological functions in vitro and in vivo. Injection of these induced endothelial cells into myocardial infarct sites after injury results in improved vascular perfusion of the scar region. Furthermore, we use genomic analyses to illustrate that Sox17-Erg reprogramming instructs cardiac fibroblasts toward an arterial-like identity. This results in a more efficient direct conversion of fibroblasts into endothelial-like cells when compared to traditional Etv2-based reprogramming. Overall, this Sox17-Erg direct reprogramming strategy offers a robust tool to generate endothelial cells both in vitro and in vivo, and has the potential to be used in repairing injured tissue.


Assuntos
Reprogramação Celular , Células Endoteliais , Fibroblastos , Fatores de Transcrição SOXF , Regulador Transcricional ERG , Animais , Camundongos , Diferenciação Celular , Reprogramação Celular/genética , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Fibroblastos/metabolismo , Fibroblastos/citologia , Proteínas HMGB/metabolismo , Proteínas HMGB/genética , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Miocárdio/citologia , Miocárdio/metabolismo , Fatores de Transcrição SOXF/metabolismo , Fatores de Transcrição SOXF/genética , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
3.
Biomicrofluidics ; 17(5): 054103, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37781136

RESUMO

Interstitial fluid pressure gradients and interstitial flow have been shown to drive morphogenic processes that shape tissues and influence progression of diseases including cancer. The advent of porous media microfluidic approaches has enabled investigation of the cellular response to interstitial flow, but questions remain as to the critical biophysical and biochemical signals imparted by interstitial fluid pressure gradients and resulting flow on resident cells and extracellular matrix (ECM). Here, we introduce a low-cost method to maintain physiological interstitial fluid pressures that is built from commonly accessible laboratory equipment, including a laser pointer, camera, Arduino board, and a commercially available linear actuator. We demonstrate that when the system is connected to a microfluidic device containing a 3D porous hydrogel, physiologic pressure is maintained with sub-Pascal resolution and when basic feedback control is directed using an Arduino, constant pressure and pressure gradient can be maintained even as cells remodel and degrade the ECM hydrogel over time. Using this model, we characterized breast cancer cell growth and ECM changes to ECM fibril structure and porosity in response to constant interstitial fluid pressure or constant interstitial flow. We observe increased collagen fibril bundling and the formation of porous structures in the vicinity of cancer cells in response to constant interstitial fluid pressure as compared to constant interstitial flow. Collectively, these results further define interstitial fluid pressure as a driver of key pathogenic responses in cells, and the systems and methods developed here will allow for future mechanistic work investigating mechanotransduction of interstitial fluid pressures and flows.

4.
Biofabrication ; 14(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34991082

RESUMO

Efficient delivery of oxygen and nutrients to tissues requires an intricate balance of blood, lymphatic, and interstitial fluid pressures (IFPs), and gradients in fluid pressure drive the flow of blood, lymph, and interstitial fluid through tissues. While specific fluid mechanical stimuli, such as wall shear stress, have been shown to modulate cellular signaling pathways along with gene and protein expression patterns, an understanding of the key signals imparted by flowing fluid and how these signals are integrated across multiple cells and cell types in native tissues is incomplete due to limitations with current assays. Here, we introduce a multi-layer microfluidic platform (MµLTI-Flow) that enables the culture of engineered blood and lymphatic microvessels and independent control of blood, lymphatic, and IFPs. Using optical microscopy methods to measure fluid velocity for applied input pressures, we demonstrate varying rates of interstitial fluid flow as a function of blood, lymphatic, and interstitial pressure, consistent with computational fluid dynamics (CFD) models. The resulting microfluidic and computational platforms will provide for analysis of key fluid mechanical parameters and cellular mechanisms that contribute to diseases in which fluid imbalances play a role in progression, including lymphedema and solid cancer.


Assuntos
Vasos Linfáticos , Microfluídica , Microfluídica/métodos , Estresse Mecânico
5.
ACS Appl Mater Interfaces ; 10(47): 40388-40400, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30360091

RESUMO

In the past, significant effort has been made to develop ultrathin membranes exhibiting physiologically relevant mechanical properties, such as thickness and elasticity of native basement membranes. However, most of these fabricated membranes have a relatively high elastic modulus, ∼MPa-GPa, relevant only to retinal and epithelial basement membranes. Vascular basement membranes exhibiting relatively low elastic modulus, ∼kPa, on the contrary, have seldom been mimicked. Membranes demonstrating high compliance, with moduli ranging in ∼kPa along with sub-microscale thicknesses have rarely been reported, and would be ideal to mimic vascular basement membranes in vitro. To address this, we fabricate ultrathin membranes demonstrating the mechanistic features exhibited by their vascular biological counterparts. Salient features of the fabricated ultrathin membranes include free suspension, physiologically relevant thickness ∼sub-micrometers, relatively low modulus ∼kPa, and sufficiently large culture area ∼20 mm2. To fabricate such ultrathin membranes, undiluted PDMS Sylgard 527 was utilized as opposed to the conventional diluted polymer-solvent mixture approach. In addition, the necessity to have a sacrificial layer for releasing membranes from the underlying substrates was also eliminated in our approach. The novelty of our work lies in achieving the distinct combination of membranes having thickness in sub-micrometers and the associated elasticity in kilopascal using undiluted polymer, which past approaches with dilution have not been able to accomplish. The ultrathin membranes with average thickness of 972 nm (thick) and 570 nm (thin) were estimated to have an elastic modulus of 45 and 214 kPa, respectively. Contact angle measurements revealed the ultrathin membranes exhibited hybrophobic characteristics in unpeeled state and transformed to hydrophilic behavior when freely suspended. Human umbilical vein endothelial cells were cultured on the polymeric ultrathin membranes, and the temporal cell response to change in local compliance of the membranes was studied by evaluating the cell spread area, density, percentage area coverage, and spread rate. After 24 h, single cells, pairs, and group of three to four cells were noticed on highly compliant thick membranes, having average thickness of 972 nm and modulus of 45 kPa. On the contrary, the cell monolayer was noted on the glass slide acting as a control. For the thin membranes featuring average thickness of 570 nm and modulus of 214 kPa, the cells tend to exhibit response similar to that on control with initiation of monolayer formation. Our results indicate, the local compliance, in turn, the membrane thickness governs the cell behavior and this can have vital implications during disease initiation and progression, wound healing, and cancer cell metastasis.


Assuntos
Membrana Basal/fisiologia , Dimetilpolisiloxanos/química , Células Endoteliais da Veia Umbilical Humana/fisiologia , Membranas Artificiais , Adsorção , Módulo de Elasticidade , Fibronectinas/metabolismo , Humanos , Reprodutibilidade dos Testes , Fatores de Tempo , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA