Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res ; 76: 103354, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430734

RESUMO

TMEM43 (LUMA) is a ubiquitously expressed protein with unknown function. The protein is phylogenetically highly conserved and also found in Drosophila melanogaster (Klinke et al., 2022). TMEM43-p.S358L is a rare, fully penetrant mutation that leads to arrhythmogenic right ventricular cardiomyopathy type 5 (ARVC5). To understand the function of the ARVC5-associated mutation it is first important to understand the function of the TMEM43 protein. Therefore, a TMEM43 knockout induced pluripotent stem cell (iPSC) line was generated using the CRISPR/Cas9 genome editing system. The resulting cell line had a deficiency of TMEM43 and showed normal morphology and a stable karyotype. The colonies were positive for pluripotency markers and could be differentiated into the three germ layers.


Assuntos
Displasia Arritmogênica Ventricular Direita , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistemas CRISPR-Cas/genética , Drosophila melanogaster/metabolismo , Displasia Arritmogênica Ventricular Direita/genética , Mutação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
2.
Cell Mol Life Sci ; 79(8): 444, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869176

RESUMO

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a severe cardiac disease that leads to heart failure or sudden cardiac death (SCD). For the pathogenesis of ARVC, various mutations in at least eight different genes have been identified. A rare form of ARVC is associated with the mutation TMEM43 p.S358L, which is a fully penetrant variant in male carriers. TMEM43 p.S358 is homologous to CG8111 p.S333 in Drosophila melanogaster. We established CRISPR/Cas9-mediated CG8111 knock-out mutants in Drosophila, as well as transgenic fly lines carrying an overexpression construct of the CG8111 p.S333L substitution. Knock-out flies developed normally, whereas the overexpression of CG8111 p.S333L caused growth defects, loss of body weight, cardiac arrhythmias, and premature death. An evaluation of a series of model mutants that replaced S333 by selected amino acids proved that the conserved serine is critical for the physiological function of CG8111. Metabolomic and proteomic analyses revealed that the S333 in CG8111 is essential to proper energy homeostasis and lipid metabolism in the fly. Of note, metabolic impairments were also found in the murine Tmem43 disease model, and fibrofatty replacement is a hallmark of human ARVC5. These findings contribute to a more comprehensive understanding of the molecular functions of CG8111 in Drosophila, and can represent a valuable basis to assess the aetiology of the human TMEM43 p.S358L variant in more detail.


Assuntos
Displasia Arritmogênica Ventricular Direita , Animais , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/patologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Proteômica
3.
Can J Cardiol ; 37(6): 857-866, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33290826

RESUMO

BACKGROUND: Arrhythmogenic cardiomyopathy (AC) is a heritable myocardial disorder and a major cause of sudden cardiac death. It is typically caused by mutations in desmosomal genes. Desmin gene (DES) variants have been previously reported in AC but with insufficient evidence to support their pathogenicity. METHODS: We aimed to assess a large AC patient cohort for DES mutations and describe a unique phenotype associated with a recurring variant in three families. A cohort of 138 probands with a diagnosis of AC and no identifiable desmosomal gene mutations were prospectively screened by whole-exome sequencing. RESULTS: A single DES variant (p.Leu115Ile, c.343C>A) was identified in 3 index patients (2%). We assessed the clinical phenotypes within their families and confirmed cosegregation. One carrier required heart transplantation, 2 died suddenly, and 1 died of noncardiac causes. All cases had right- and left-ventricular (LV) involvement. LV late gadolinium enhancement was present in all, and circumferential subepicardial distribution was confirmed on histology. A significant burden of ventricular arrhythmias was noted. Desmin aggregates were not observed macroscopically, but analysis of the desmin filament formation in transfected cardiomyocytes derived from induced pluripotent stem cells, and SW13 cells revealed cytoplasmic aggregation of mutant desmin. Atomic force microscopy revealed that the mutant form accumulates into short protofilaments and small fibrous aggregates. CONCLUSIONS: DES p.Leu115Ile leads to disruption of the desmin filament network and causes a malignant biventricular form of AC, characterized by LV dysfunction and a circumferential subepicardial distribution of myocardial fibrosis.


Assuntos
Cardiomiopatias , Desmina/genética , Fibrose Endomiocárdica , Disfunção Ventricular Esquerda , Disfunção Ventricular Direita , Fibrilação Ventricular , Cardiomiopatias/complicações , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Cardiomiopatias/terapia , Morte Súbita Cardíaca , Fibrose Endomiocárdica/diagnóstico , Fibrose Endomiocárdica/etiologia , Feminino , Estado Funcional , Triagem de Portadores Genéticos/métodos , Testes de Função Cardíaca/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Distrofias Musculares/genética , Distrofias Musculares/patologia , Mutação de Sentido Incorreto , Miocárdio/patologia , Reino Unido , Disfunção Ventricular Esquerda/diagnóstico , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Direita/diagnóstico , Disfunção Ventricular Direita/etiologia , Fibrilação Ventricular/diagnóstico , Fibrilação Ventricular/etiologia
4.
Stem Cell Res ; 48: 101957, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32858485

RESUMO

Arrhythmogenic right ventricular cardiomyopathy type 5 (ARVC-5) is a dominantly inherited cardiomyopathy caused by the mutation TMEM43-p.S358L. An induced pluripotent stem cell (iPSC) line (HDZi001-A) from an adult male mutation carrier was generated, using the CytoTune Sendai Kit. The resulting iPSCs carried the mutation TMEM43-p.S358L, had a normal morphology, a stable karyotype and were positive for the expression of pluripotency markers. This iPSC line can be differentiated into the three germ layers and might be a useful model for the characterization of ARVC-5 associated pathomechanism.


Assuntos
Displasia Arritmogênica Ventricular Direita , Células-Tronco Pluripotentes Induzidas , Adulto , Linhagem Celular , Humanos , Masculino , Proteínas de Membrana/genética , Mutação
5.
J Clin Med ; 9(4)2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-32235386

RESUMO

Background: The pleomorphic clinical presentation makes the diagnosis of desminopathy difficult. We aimed to describe the prevalence, phenotypic expression, and mitochondrial function of individuals with putative disease-causing desmin (DES) variants identified in patients with an unexplained etiology of cardiomyopathy. Methods: A total of 327 Czech patients underwent whole exome sequencing and detailed phenotyping in probands harboring DES variants. Results: Rare, conserved, and possibly pathogenic DES variants were identified in six (1.8%) probands. Two DES variants previously classified as variants of uncertain significance (p.(K43E), p.(S57L)), one novel DES variant (p.(A210D)), and two known pathogenic DES variants (p.(R406W), p.(R454W)) were associated with characteristic desmin-immunoreactive aggregates in myocardial and/or skeletal biopsy samples. The individual with the novel DES variant p.(Q364H) had a decreased myocardial expression of desmin with absent desmin aggregates in myocardial/skeletal muscle biopsy and presented with familial left ventricular non-compaction cardiomyopathy (LVNC), a relatively novel phenotype associated with desminopathy. An assessment of the mitochondrial function in four probands heterozygous for a disease-causing DES variant confirmed a decreased metabolic capacity of mitochondrial respiratory chain complexes in myocardial/skeletal muscle specimens, which was in case of myocardial succinate respiration more profound than in other cardiomyopathies. Conclusions: The presence of desminopathy should also be considered in individuals with LVNC, and in the differential diagnosis of mitochondrial diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA