Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomedicine ; 12(7): 2031-2041, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27184097

RESUMO

Carbohydrate receptors on alveolar macrophages are attractive targets for receptor-mediated delivery of nanostructured therapeutics. In this study, we employed reversible addition fragmentation chain transfer polymerization to synthesize neoglycopolymers, consisting of mannose- and galactose methacrylate-based monomers copolymerized with cholesterol methacrylate for use in functional liposome studies. Glycopolymer-functional liposomes were employed to elucidate macrophage mannose receptor (CD206) and macrophage galactose-type lectin (CD301) targeting in both primary macrophage and immortal macrophage cell lines. Expression of CD206 and CD301 was observed to vary significantly between cell lines (murine alveolar macrophage, murine bone marrow-derived macrophage, RAW264.7, and MH-S), which has significant implications in in vitro targeting and uptake studies. Synthetic glycopolymers and glycopolymer augmented liposomes demonstrated specific receptor-mediated uptake in a manner dependent on carbohydrate receptor expression. These results establish a platform capable of probing endogenous carbohydrate receptor-mediated targeting via glycofunctional nanomaterials.


Assuntos
Metabolismo dos Carboidratos , Lipossomos , Macrófagos Alveolares , Animais , Linhagem Celular , Portadores de Fármacos , Humanos , Lectinas , Macrófagos , Manose , Camundongos
2.
PLoS One ; 10(8): e0135340, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26252012

RESUMO

Trichomonas vaginalis causes vaginitis and increases the risk of HIV transmission by heterosexual sex, while Tritrichomonas foetus causes premature abortion in cattle. Our goals were to determine the effects, if any, of anti-retroviral lectins, which are designed to prevent heterosexual transmission of HIV, on adherence of Trichomonas to ectocervical cells and on Tritrichomonas infections in a mouse model. We show that Trichomonas Asn-linked glycans (N-glycans), like those of HIV, bind the mannose-binding lectin (MBL) that is part of the innate immune system. N-glycans of Trichomonas and Tritrichomonas bind anti-retroviral lectins (cyanovirin-N and griffithsin) and the 2G12 monoclonal antibody, each of which binds HIV N-glycans. Binding of cyanovirin-N appears to be independent of susceptibility to metronidazole, the major drug used to treat Trichomonas. Anti-retroviral lectins, MBL, and galectin-1 cause Trichomonas to self-aggregate and precipitate. The anti-retroviral lectins also increase adherence of ricin-resistant mutants, which are less adherent than parent cells, to ectocervical cell monolayers and to organotypic EpiVaginal tissue cells. Topical application of either anti-retroviral lectins or yeast N-glycans decreases by 40 to 70% the recovery of Tritrichomonas from the mouse vagina. These results, which are explained by a few simple models, suggest that the anti-retroviral lectins have a modest potential for preventing or treating human infections with Trichomonas.


Assuntos
Células Epiteliais/parasitologia , Lectinas/química , Tricomoníase/parasitologia , Vaginite por Trichomonas/parasitologia , Vagina/parasitologia , Animais , Antirretrovirais/química , Anticorpos Monoclonais/química , Proteínas de Bactérias/química , Anticorpos Amplamente Neutralizantes , Proteínas de Transporte/química , Modelos Animais de Doenças , Células Epiteliais/citologia , Feminino , Galectina 1/química , Anticorpos Anti-HIV , Imunidade Inata , Lectina de Ligação a Manose/química , Metronidazol/química , Camundongos , Mutação , Polissacarídeos/química , Ricina/química , Tricomoníase/metabolismo , Vaginite por Trichomonas/metabolismo , Trichomonas vaginalis , Tritrichomonas foetus , Vagina/patologia
3.
Langmuir ; 29(26): 8187-92, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23782319

RESUMO

In this study, we employed thiolated peptides of the conformationally constrained, strongly helicogenic α-aminoisobutyric acid (Aib) residue to prepare self-assembled monolayers (SAMs) on gold surfaces. Electrochemistry and infrared reflection absorption spectroscopy support the formation of very well packed Aib-peptide SAMs. The immobilized peptides retain their helical structure, and the resulting SAMs are stabilized by a network of intermolecular H bonds involving the NH groups adjacent to the Au surface. Binary SAMs containing a synthetically defined glycosylated mannose-functionalized Aib-peptide as the second component display similar features, thereby providing reproducible substrates suitable for the controlled display of bioactive carbohydrate ligands. The efficiency of such Aib-based SAMs as a biomolecular recognition platform was evidenced by examining the mannose-concanavalin A interaction via surface plasmon resonance biosensing.


Assuntos
Ácidos Aminoisobutíricos/química , Ouro/química , Proteínas Imobilizadas/química , Peptídeos/química , Compostos de Sulfidrila/química , Concanavalina A/análise , Concanavalina A/química , Técnicas Eletroquímicas , Ligação de Hidrogênio , Proteínas Imobilizadas/síntese química , Manose/química , Peptídeos/síntese química , Estabilidade Proteica , Estrutura Secundária de Proteína , Compostos de Sulfidrila/síntese química , Ressonância de Plasmônio de Superfície
4.
Biosens Bioelectron ; 34(1): 253-60, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22405843

RESUMO

Carbohydrate-mediated host-pathogen interactions are essential to bacterial and viral pathogenesis, and represent an attractive target for the development of antiadhesives to prevent infection. We present a versatile microelectrode array-based platform to investigate carbohydrate-mediated protein and bacterial binding, with the objective of developing a generalizable method for screening inhibitors of host-microbe interactions. Microelectrode arrays are well suited for interrogating biological binding events, including proteins and whole-cells, and are amenable to electrochemical derivitization, facilitating rapid deposition of biomolecules. In this study, we achieve microelectrode functionalization with carbohydrates via controlled polymerization of pyrrole to individual microelectrodes, followed by physisorption of neoglycoconjugates to the polypyrrole-coated electrodes. Bioactivity of the immobilized carbohydrates was confirmed with carbohydrate-binding proteins (lectins) detected by both fluorescent and electrochemical means. The platform's ability to analyze whole-cell binding was demonstrated using strains of Escherichia coli and Salmonella enterica, and the dose-dependent inhibition of S. enterica by a soluble carbohydrate antiadhesive.


Assuntos
Técnicas Biossensoriais/métodos , Carboidratos/química , Adesão Celular , Polímeros/química , Proteínas/isolamento & purificação , Pirróis/química , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas , Escherichia coli/química , Interações Hospedeiro-Patógeno , Lectinas/química , Microeletrodos , Ligação Proteica , Proteínas/antagonistas & inibidores , Ricina/isolamento & purificação , Salmonella enterica/química
5.
J Biomed Mater Res A ; 97(1): 1-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21308984

RESUMO

As methods to orient proteins are conceived, techniques must also be developed that provide an accurate characterization of immobilized protein orientation. In this study, X-ray photoelectron spectroscopy (XPS), surface plasmon resonance (SPR), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to probe the orientation of a surface immobilized variant of the humanized anti-lysozyme variable fragment (HuLys Fv, 26 kDa). This protein contained both a hexahistidine tag and a cysteine residue, introduced at opposite ends of the HuLys Fv, for immobilization onto nitrilotriacetic acid (NTA) and maleimide oligo(ethylene glycol) (MEG)-terminated substrates, respectively. The thiol group on the cysteine residue selectively binds to the MEG groups, while the his-tag selectively binds to the Ni-loaded NTA groups. XPS was used to monitor protein coverage on both surfaces by following the change in the nitrogen atomic %. SPR results showed a 10-fold difference in lysozyme binding between the two different HuLys Fv orientations. The ToF-SIMS data provided a clear differentiation between the two samples due to the intensity differences of secondary ions originating from asymmetrically located amino acids in HuLys Fv (histidine: 81, 82, and 110 m/z; phenylalanine: 120 and 131 m/z). An intensity ratio of the secondary ion peaks from the histidine and phenylalanine residues at either end of the protein was then calculated directly from the ToF-SIMS data. The 45% change in this ratio, observed between the NTA and MEG substrates with similar HuLys Fv surface coverages, indicates that the HuLys Fv fragment has opposite orientations on two different surfaces.


Assuntos
Proteínas Imobilizadas/química , Região Variável de Imunoglobulina/química , Muramidase/imunologia , Espectrometria de Massa de Íon Secundário/métodos , Aminoácidos/metabolismo , Humanos , Região Variável de Imunoglobulina/metabolismo , Espectroscopia Fotoeletrônica , Estrutura Terciária de Proteína , Ressonância de Plasmônio de Superfície
6.
PLoS Pathog ; 6(8): e1001059, 2010 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-20808847

RESUMO

The infectious and diagnostic stage of Giardia lamblia (also known as G. intestinalis or G. duodenalis) is the cyst. The Giardia cyst wall contains fibrils of a unique beta-1,3-linked N-acetylgalactosamine (GalNAc) homopolymer and at least three cyst wall proteins (CWPs) composed of Leu-rich repeats (CWP(LRR)) and a C-terminal conserved Cys-rich region (CWP(CRR)). Our goals were to dissect the structure of the cyst wall and determine how it is disrupted during excystation. The intact Giardia cyst wall is thin (approximately 400 nm), easily fractured by sonication, and impermeable to small molecules. Curled fibrils of the GalNAc homopolymer are restricted to a narrow plane and are coated with linear arrays of oval-shaped protein complex. In contrast, cyst walls of Giardia treated with hot alkali to deproteinate fibrils of the GalNAc homopolymer are thick (approximately 1.2 microm), resistant to sonication, and permeable. The deproteinated GalNAc homopolymer, which forms a loose lattice of curled fibrils, is bound by native CWP1 and CWP2, as well as by maltose-binding protein (MBP)-fusions containing the full-length CWP1 or CWP1(LRR). In contrast, neither MBP alone nor MBP fused to CWP1(CRR) bind to the GalNAc homopolymer. Recombinant CWP1 binds to the GalNAc homopolymer within secretory vesicles of Giardia encysting in vitro. Fibrils of the GalNAc homopolymer are exposed during excystation or by treatment of heat-killed cysts with chymotrypsin, while deproteinated fibrils of the GalNAc homopolymer are degraded by extracts of Giardia cysts but not trophozoites. These results show the Leu-rich repeat domain of CWP1 is a lectin that binds to curled fibrils of the GalNAc homopolymer. During excystation, host and Giardia proteases appear to degrade bound CWPs, exposing fibrils of the GalNAc homopolymer that are digested by a stage-specific glycohydrolase.


Assuntos
Acetilgalactosamina/metabolismo , Parede Celular/metabolismo , Giardia lamblia/química , Giardia lamblia/metabolismo , Proteínas de Protozoários/metabolismo , Separação Celular , Parede Celular/química , Citometria de Fluxo , Lectinas/metabolismo , Microscopia Eletrônica de Transmissão
7.
Eukaryot Cell ; 7(11): 1930-40, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18820077

RESUMO

Giardia lamblia is present in the intestinal lumen as a binucleate, flagellated trophozoite or a quadranucleate, immotile cyst. Here we used the plant lectin wheat germ agglutinin (WGA), which binds to the disaccharide di-N-acetyl-chitobiose (GlcNAc(2)), which is the truncated Asn-linked glycan (N-glycan) of Giardia, to affinity purify the N-glycomes (glycoproteins with N-glycans) of trophozoites and cysts. Fluorescent WGA bound to the perinuclear membranes, peripheral acidified vesicles, and plasma membranes of trophozoites. In contrast, WGA bound strongly to membranes adjacent to the wall of Giardia cysts and less strongly to the endoplasmic reticulum and acidified vesicles. WGA lectin-affinity chromatography dramatically enriched secreted and membrane proteins of Giardia, including proteases and acid phosphatases that retain their activities. With mass spectroscopy, we identified 91 glycopeptides with N-glycans and 194 trophozoite-secreted and membrane proteins, including 42 unique proteins. The Giardia oligosaccharyltransferase, which contains a single catalytic subunit, preferred N glycosylation sites with Thr to those with Ser in vivo but had no preference for flanking amino acids. The most-abundant glycoproteins in the N-glycome of trophozoites were lysosomal enzymes, folding-associated proteins, and unique transmembrane proteins with Cys-, Leu-, or Gly-rich repeats. We identified 157 secreted and membrane proteins in the Giardia cysts, including 20 unique proteins. Compared to trophozoites, cysts were enriched in Gly-rich repeat transmembrane proteins, cyst wall proteins, and unique membrane proteins but had relatively fewer Leu-rich repeat proteins, folding-associated proteins, and unique secreted proteins. In summary, there are major changes in the Giardia N-glycome with the differentiation from trophozoites to cysts.


Assuntos
Asparagina/metabolismo , Giardia lamblia/crescimento & desenvolvimento , Giardia lamblia/metabolismo , Glicoproteínas/metabolismo , Polissacarídeos/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Cromatografia de Afinidade , Giardia lamblia/química , Giardia lamblia/genética , Glicoproteínas/química , Glicoproteínas/genética , Dados de Sequência Molecular , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Trofozoítos/química , Trofozoítos/crescimento & desenvolvimento , Trofozoítos/metabolismo , Aglutininas do Germe de Trigo/metabolismo
8.
Eukaryot Cell ; 5(5): 836-48, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16682461

RESUMO

Entamoeba histolytica, which causes amebic dysentery and liver abscesses, is spread via chitin-walled cysts. The most abundant protein in the cyst wall of Entamoeba invadens, a model for amebic encystation, is a lectin called EiJacob1. EiJacob1 has five tandemly arrayed, six-Cys chitin-binding domains separated by low-complexity Ser- and Thr-rich spacers. E. histolytica also has numerous predicted Jessie lectins and chitinases, which contain a single, N-terminal eight-Cys chitin-binding domain. We hypothesized that E. invadens cyst walls are composed entirely of proteins with six-Cys or eight-Cys chitin-binding domains and that some of these proteins contain sugars. E. invadens genomic sequences predicted seven Jacob lectins, five Jessie lectins, and three chitinases. Reverse transcription-PCR analysis showed that mRNAs encoding Jacobs, Jessies, and chitinases are increased during E. invadens encystation, while mass spectrometry showed that the cyst wall is composed of an approximately 30:70 mix of Jacob lectins (cross-linking proteins) and Jessie and chitinase lectins (possible enzymes). Three Jacob lectins were cleaved prior to Lys at conserved sites (e.g., TPSVDK) in the Ser- and Thr-rich spacers between chitin-binding domains. A model peptide was cleaved at the same site by papain and E. invadens Cys proteases, suggesting that the latter cleave Jacob lectins in vivo. Some Jacob lectins had O-phosphodiester-linked carbohydrates, which were one to seven hexoses long and had deoxysugars at reducing ends. We concluded that the major protein components of the E. invadens cyst wall all contain chitin-binding domains (chitinases, Jessie lectins, and Jacob lectins) and that the Jacob lectins are differentially modified by site-specific Cys proteases and O-phosphodiester-linked glycans.


Assuntos
Quitina/metabolismo , Entamoeba/metabolismo , Lectinas/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Quitinases/química , Quitinases/metabolismo , Sequência Conservada , Cisteína Endopeptidases/metabolismo , Entamoeba/genética , Genoma de Protozoário , Lectinas/química , Lectinas/genética , Espectrometria de Massas , Dados de Sequência Molecular , Polissacarídeos/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo
9.
Chem Biol ; 11(6): 875-81, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15217620

RESUMO

Defining HIV envelope glycoprotein interactions with host factors or binding partners advances our understanding of the infectious process and provides a basis for the design of vaccines and agents that interfere with HIV entry. Here we employ carbohydrate and glycoprotein microarrays to analyze glycan-dependent gp120-protein interactions. In concert with new linking chemistries and synthetic methods, the carbohydrate arrays combine the advantages of microarray technology with the flexibility and precision afforded by organic synthesis. With these microarrays, we individually and competitively determined the binding profiles of five gp120 binding proteins, established the carbohydrate structural requirements for these interactions, and identified a potential strategy for HIV vaccine development.


Assuntos
Glicoproteínas/análise , Proteína gp120 do Envelope de HIV/análise , HIV/fisiologia , Análise em Microsséries/métodos , Oligossacarídeos/análise , Polissacarídeos/química , Ligação Competitiva , Sequência de Carboidratos , Glicoproteínas/fisiologia , HIV/química , Proteína gp120 do Envelope de HIV/fisiologia , Humanos , Dados de Sequência Molecular , Oligossacarídeos/fisiologia , Análise Serial de Proteínas/métodos , Ligação Proteica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA