Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 15(5): e17580, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36946379

RESUMO

Alongside vaccines, antiviral drugs are becoming an integral part of our response to the SARS-CoV-2 pandemic. Nirmatrelvir-an orally available inhibitor of the 3-chymotrypsin-like cysteine protease-has been shown to reduce the risk of progression to severe COVID-19. However, the impact of nirmatrelvir treatment on the development of SARS-CoV-2-specific adaptive immune responses is unknown. Here, by using mouse models of SARS-CoV-2 infection, we show that nirmatrelvir administration blunts the development of SARS-CoV-2-specific antibody and T cell responses. Accordingly, upon secondary challenge, nirmatrelvir-treated mice recruited significantly fewer memory T and B cells to the infected lungs and mediastinal lymph nodes, respectively. Together, the data highlight a potential negative impact of nirmatrelvir treatment with important implications for clinical management and might help explain the virological and/or symptomatic relapse after treatment completion reported in some individuals.


Assuntos
Imunidade Adaptativa , Antivirais , Tratamento Farmacológico da COVID-19 , Lactamas , Animais , Camundongos , COVID-19/imunologia , SARS-CoV-2 , Antivirais/administração & dosagem , Imunidade Adaptativa/efeitos dos fármacos , Lactamas/administração & dosagem , Células T de Memória/imunologia , Linfócitos B/imunologia , Camundongos Endogâmicos C57BL
2.
Mol Oncol ; 16(5): 1132-1152, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34632715

RESUMO

Multiple molecular features, such as activation of specific oncogenes (e.g., MYC, BCL2) or a variety of gene expression signatures, have been associated with disease course in diffuse large B-cell lymphoma (DLBCL), although their relationships and implications for targeted therapy remain to be fully unraveled. We report that MYC activity is closely correlated with-and most likely a driver of-gene signatures related to oxidative phosphorylation (OxPhos) in DLBCL, pointing to OxPhos enzymes, in particular mitochondrial electron transport chain (ETC) complexes, as possible therapeutic targets in high-grade MYC-associated lymphomas. In our experiments, indeed, MYC sensitized B cells to the ETC complex I inhibitor IACS-010759. Mechanistically, IACS-010759 triggered the integrated stress response (ISR) pathway, driven by the transcription factors ATF4 and CHOP, which engaged the intrinsic apoptosis pathway and lowered the apoptotic threshold in MYC-overexpressing cells. In line with these findings, the BCL2-inhibitory compound venetoclax synergized with IACS-010759 against double-hit lymphoma (DHL), a high-grade malignancy with concurrent activation of MYC and BCL2. In BCL2-negative lymphoma cells, instead, killing by IACS-010759 was potentiated by the Mcl-1 inhibitor S63845. Thus, combining an OxPhos inhibitor with select BH3-mimetic drugs provides a novel therapeutic principle against aggressive, MYC-associated DLBCL variants.


Assuntos
Linfoma Difuso de Grandes Células B , Proteínas Proto-Oncogênicas c-myc , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Oncogenes , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Respiração
3.
Sci Immunol ; 7(67): eabl9929, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34812647

RESUMO

The development of a tractable small animal model faithfully reproducing human coronavirus disease 2019 pathogenesis would arguably meet a pressing need in biomedical research. Thus far, most investigators have used transgenic mice expressing the human ACE2 in epithelial cells (K18-hACE2 transgenic mice) that are intranasally instilled with a liquid severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suspension under deep anesthesia. Unfortunately, this experimental approach results in disproportionate high central nervous system infection leading to fatal encephalitis, which is rarely observed in humans and severely limits this model's usefulness. Here, we describe the use of an inhalation tower system that allows exposure of unanesthetized mice to aerosolized virus under controlled conditions. Aerosol exposure of K18-hACE2 transgenic mice to SARS-CoV-2 resulted in robust viral replication in the respiratory tract, anosmia, and airway obstruction but did not lead to fatal viral neuroinvasion. When compared with intranasal inoculation, aerosol infection resulted in a more pronounced lung pathology including increased immune infiltration, fibrin deposition, and a transcriptional signature comparable to that observed in SARS-CoV-2­infected patients. This model may prove useful for studies of viral transmission, disease pathogenesis (including long-term consequences of SARS-CoV-2 infection), and therapeutic interventions.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/fisiopatologia , Modelos Animais de Doenças , Encefalite Viral/prevenção & controle , Queratina-18/genética , Sprays Nasais , SARS-CoV-2/fisiologia , Administração por Inalação , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/imunologia , COVID-19/virologia , Encefalite Viral/mortalidade , Células Epiteliais/metabolismo , Feminino , Humanos , Queratina-18/metabolismo , Pulmão/imunologia , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas/genética , Transcriptoma , Replicação Viral
4.
Circ Res ; 127(8): 1056-1073, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32673519

RESUMO

RATIONALE: Intercellular tight junctions are crucial for correct regulation of the endothelial barrier. Their composition and integrity are affected in pathological contexts, such as inflammation and tumor growth. JAM-A (junctional adhesion molecule A) is a transmembrane component of tight junctions with a role in maintenance of endothelial barrier function, although how this is accomplished remains elusive. OBJECTIVE: We aimed to understand the molecular mechanisms through which JAM-A expression regulates tight junction organization to control endothelial permeability, with potential implications under pathological conditions. METHODS AND RESULTS: Genetic deletion of JAM-A in mice significantly increased vascular permeability. This was associated with significantly decreased expression of claudin-5 in the vasculature of various tissues, including brain and lung. We observed that C/EBP-α (CCAAT/enhancer-binding protein-α) can act as a transcription factor to trigger the expression of claudin-5 downstream of JAM-A, to thus enhance vascular barrier function. Accordingly, gain-of-function for C/EBP-α increased claudin-5 expression and decreased endothelial permeability, as measured by the passage of fluorescein isothiocyanate (FITC)-dextran through endothelial monolayers. Conversely, C/EBP-α loss-of-function showed the opposite effects of decreased claudin-5 levels and increased endothelial permeability. Mechanistically, JAM-A promoted C/EBP-α expression through suppression of ß-catenin transcriptional activity, and also through activation of EPAC (exchange protein directly activated by cAMP). C/EBP-α then directly binds the promoter of claudin-5 to thereby promote its transcription. Finally, JAM-A-C/EBP-α-mediated regulation of claudin-5 was lost in blood vessels from tissue biopsies from patients with glioblastoma and ovarian cancer. CONCLUSIONS: We describe here a novel role for the transcription factor C/EBP-α that is positively modulated by JAM-A, a component of tight junctions that acts through EPAC to up-regulate the expression of claudin-5, to thus decrease endothelial permeability. Overall, these data unravel a regulatory molecular pathway through which tight junctions limit vascular permeability. This will help in the identification of further therapeutic targets for diseases associated with endothelial barrier dysfunction. Graphic Abstract: An graphic abstract is available for this article.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Permeabilidade Capilar , Moléculas de Adesão Celular/metabolismo , Claudina-5/metabolismo , Células Endoteliais/metabolismo , Receptores de Superfície Celular/metabolismo , Junções Íntimas/metabolismo , Adulto , Idoso , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Moléculas de Adesão Celular/genética , Linhagem Celular , Claudina-5/genética , Feminino , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neovascularização Patológica , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Receptores de Superfície Celular/genética , Transdução de Sinais , Junções Íntimas/genética , Regulação para Cima
5.
Cancer Immunol Res ; 6(8): 953-964, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30018042

RESUMO

The Wnt/ß-catenin pathway regulates T-cell functions, including the repression of effector functions to the advantage of memory development via Tcf1. In a companion study, we demonstrate that, in human cancers, Wnt3a/ß-catenin signaling maintains tumor-infiltrating T cells in a partially exhausted status. Here, we have investigated the effects of Wnt3a neutralization in vivo in a mouse tumor model. Abundant Wnt3a was released, mostly by stromal cells, in the tumor microenvironment. We tested whether Wnt3a neutralization in vivo could rescue the effector capacity of tumor-infiltrating T cells, by administering an antibody to Wnt3a to tumor-bearing mice. This therapy restrained tumor growth and favored the expansion of tumor antigen-specific CD8+ effector memory T cells with increased expression of Tbet and IFNγ and reduced expression of Tcf1. However, the effect was not attributable to the interruption of T-cell-intrinsic ß-catenin signaling, because Wnt3a/ß-catenin activation correlated with enhanced, not reduced, T-cell effector functions both ex vivo and in vitro Adoptively transferred CD8+ T cells, not directly exposed to the anti-Wnt3a antibody but infiltrating previously Wnt3a-neutralized tumors, also showed improved functions. The rescue of T-cell response was thus secondary to T-cell-extrinsic changes that likely involved dendritic cells. Indeed, tumor-derived Wnt3a strongly suppressed dendritic cell maturation in vitro, and anti-Wnt3a treatment rescued dendritic cell activities in vivo Our results clarify the function of the Wnt3a/ß-catenin pathway in antitumor effector T cells and suggest that Wnt3a neutralization might be a promising immunotherapy for rescuing dendritic cell activities. Cancer Immunol Res; 6(8); 953-64. ©2018 AACR.


Assuntos
Adenocarcinoma/terapia , Neoplasias do Colo/terapia , Linfócitos do Interstício Tumoral/imunologia , Via de Sinalização Wnt/imunologia , Proteína Wnt3A/imunologia , Adenocarcinoma/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Células Dendríticas/imunologia , Humanos , Imunoterapia/métodos , Transfusão de Linfócitos/métodos , Masculino , Camundongos Endogâmicos C57BL , Células Estromais/imunologia , Proteína Wnt3A/antagonistas & inibidores , Proteína Wnt3A/biossíntese
6.
Sci Transl Med ; 10(426)2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386360

RESUMO

High-grade B cell lymphomas with concurrent activation of the MYC and BCL2 oncogenes, also known as double-hit lymphomas (DHL), show dismal prognosis with current therapies. MYC activation sensitizes cells to inhibition of mitochondrial translation by the antibiotic tigecycline, and treatment with this compound provides a therapeutic window in a mouse model of MYC-driven lymphoma. We now addressed the utility of this antibiotic for treatment of DHL. BCL2 activation in mouse Eµ-myc lymphomas antagonized tigecycline-induced cell death, which was specifically restored by combined treatment with the BCL2 inhibitor venetoclax. In line with these findings, tigecycline and two related antibiotics, tetracycline and doxycycline, synergized with venetoclax in killing human MYC/BCL2 DHL cells. Treatment of mice engrafted with either DHL cell lines or a patient-derived xenograft revealed strong antitumoral effects of the tigecycline/venetoclax combination, including long-term tumor eradication with one of the cell lines. This drug combination also had the potential to cooperate with rituximab, a component of current front-line regimens. Venetoclax and tigecycline are currently in the clinic with distinct indications: Our preclinical results warrant the repurposing of these drugs for combinatorial treatment of DHL.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sulfonamidas/uso terapêutico , Tigeciclina/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores
7.
Hepatology ; 65(5): 1708-1719, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27859418

RESUMO

The ST18 gene has been proposed to act either as a tumor suppressor or as an oncogene in different human cancers, but direct evidence for its role in tumorigenesis has been lacking thus far. Here, we demonstrate that ST18 is critical for tumor progression and maintenance in a mouse model of liver cancer, based on oncogenic transformation and adoptive transfer of primary precursor cells (hepatoblasts). ST18 messenger RNA (mRNA) and protein were detectable neither in normal liver nor in cultured hepatoblasts, but were readily expressed after subcutaneous engraftment and tumor growth. ST18 expression in liver cells was induced by inflammatory cues, including acute or chronic inflammation in vivo, as well as coculture with macrophages in vitro. Knocking down the ST18 mRNA in transplanted hepatoblasts delayed tumor progression. Induction of ST18 knockdown in pre-established tumors caused rapid tumor involution associated with pervasive morphological changes, proliferative arrest, and apoptosis in tumor cells, as well as depletion of tumor-associated macrophages, vascular ectasia, and hemorrhage. Reciprocally, systemic depletion of macrophages in recipient animals had very similar phenotypic consequences, impairing either tumor development or maintenance, and suppressing ST18 expression in hepatoblasts. Finally, RNA sequencing of ST18-depleted tumors before involution revealed down-regulation of inflammatory response genes, pointing to the suppression of nuclear factor kappa B-dependent transcription. CONCLUSION: ST18 expression in epithelial cells is induced by tumor-associated macrophages, contributing to the reciprocal feed-forward loop between both cell types in liver tumorigenesis. Our findings warrant the exploration of means to interfere with ST18-dependent epithelium-macrophage interactions in a therapeutic setting. (Hepatology 2017;65:1708-1719).


Assuntos
Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas Experimentais/etiologia , Fatores de Transcrição/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Camundongos Endogâmicos C57BL
8.
Cancer Res ; 76(12): 3463-72, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27197165

RESUMO

Tumors driven by activation of the transcription factor MYC generally show oncogene addiction. However, the gene expression programs that depend upon sustained MYC activity remain unknown. In this study, we employed a mouse model of liver carcinoma driven by a reversible tet-MYC transgene, combined with chromatin immunoprecipitation and gene expression profiling to identify MYC-dependent regulatory events. As previously reported, MYC-expressing mice exhibited hepatoblastoma- and hepatocellular carcinoma-like tumors, which regressed when MYC expression was suppressed. We further show that cellular transformation, and thus initiation of liver tumorigenesis, were impaired in mice harboring a MYC mutant unable to associate with the corepressor protein MIZ1 (ZBTB17). Notably, switching off the oncogene in advanced carcinomas revealed that MYC was required for the continuous activation and repression of distinct sets of genes, constituting no more than half of all genes deregulated during tumor progression and an even smaller subset of all MYC-bound genes. Altogether, our data provide the first detailed analysis of a MYC-dependent transcriptional program in a fully developed carcinoma and offer a guide to identifying the critical effectors contributing to MYC-driven tumor maintenance. Cancer Res; 76(12); 3463-72. ©2016 AACR.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Oncogenes , Proteínas Proto-Oncogênicas c-myc/fisiologia , Transcrição Gênica , Animais , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA