Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(11): 113326, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37897727

RESUMO

Glucagon-like peptide 1 (GLP-1R) and glucose-dependent insulinotropic polypeptide (GIPR) receptors are G-protein-coupled receptors involved in glucose homeostasis. Diabetogenic conditions decrease ß-arrestin 2 (ARRB2) levels in human islets. In mouse ß cells, ARRB2 dampens insulin secretion by partially uncoupling cyclic AMP (cAMP)/protein kinase A (PKA) signaling at physiological doses of GLP-1, whereas at pharmacological doses, the activation of extracellular signal-related kinase (ERK)/cAMP-responsive element-binding protein (CREB) requires ARRB2. In contrast, GIP-potentiated insulin secretion needs ARRB2 in mouse and human islets. The GIPR-ARRB2 axis is not involved in cAMP/PKA or ERK signaling but does mediate GIP-induced F-actin depolymerization. Finally, the dual GLP-1/GIP agonist tirzepatide does not require ARRB2 for the potentiation of insulin secretion. Thus, ARRB2 plays distinct roles in regulating GLP-1R and GIPR signaling, and we highlight (1) its role in the physiological context and the possible functional consequences of its decreased expression in pathological situations such as diabetes and (2) the importance of assessing the signaling pathways engaged by the agonists (biased/dual) for therapeutic purposes.


Assuntos
Células Secretoras de Insulina , Camundongos , Humanos , Animais , Células Secretoras de Insulina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Insulina/metabolismo , beta-Arrestina 2/metabolismo , beta-Arrestina 1/metabolismo , Glucose/metabolismo
2.
Cell Death Dis ; 13(4): 353, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428762

RESUMO

Pancreatic ß-cell failure in type 2 diabetes mellitus (T2DM) is associated with impaired regulation of autophagy which controls ß-cell development, function, and survival through clearance of misfolded proteins and damaged organelles. However, the mechanisms responsible for defective autophagy in T2DM ß-cells remain unknown. Since recent studies identified circadian clock transcriptional repressor REV-ERBα as a novel regulator of autophagy in cancer, in this study we set out to test whether REV-ERBα-mediated inhibition of autophagy contributes to the ß-cell failure in T2DM. Our study provides evidence that common diabetogenic stressors (e.g., glucotoxicity and cytokine-mediated inflammation) augment ß-cell REV-ERBα expression and impair ß-cell autophagy and survival. Notably, pharmacological activation of REV-ERBα was shown to phenocopy effects of diabetogenic stressors on the ß-cell through inhibition of autophagic flux, survival, and insulin secretion. In contrast, negative modulation of REV-ERBα was shown to provide partial protection from inflammation and glucotoxicity-induced ß-cell failure. Finally, using bioinformatic approaches, we provide further supporting evidence for augmented REV-ERBα activity in T2DM human islets associated with impaired transcriptional regulation of autophagy and protein degradation pathways. In conclusion, our study reveals a previously unexplored causative relationship between REV-ERBα expression, inhibition of autophagy, and ß-cell failure in T2DM.


Assuntos
Relógios Circadianos , Diabetes Mellitus Tipo 2 , Autofagia/genética , Ritmo Circadiano/fisiologia , Diabetes Mellitus Tipo 2/genética , Humanos , Inflamação , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo
3.
Methods Mol Biol ; 1957: 345-364, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30919365

RESUMO

Novel findings reveal important functional roles for ß-arrestin 1 and ß-arrestin 2 in the regulation of insulin secretion, ß-cell survival, and ß-cell mass plasticity not only by glucose but also by G-protein-coupled receptors, such as the glucagon-like peptide-1 (GLP-1) and the pituitary adenylate cyclase-activating polypeptide (PACAP) receptors or GPR40, or tyrosine kinase receptors, such as the insulin receptor. Here, we describe experimental protocols to knock down ß-arrestins by small interference RNA, to follow subcellular localization of ß-arrestins in the cytosol and nucleus of the insulinoma INS-1E rat pancreatic ß-cell line, and to analyze ß-arrestin protein expression by Western blot using INS-1E cells and isolated mouse or human pancreatic islets. We also provide details on how to genotype ß-arrestin 2 knockout (Arrb2-/-) mice and to evaluate ß-arrestin-mediated roles in ß-cell mass plasticity and ß-cell signaling using immunocytochemistry on pancreatic sections or on primary dispersed ß-cells from wild-type mice and Arrb2-/- mice.


Assuntos
Células Secretoras de Insulina/metabolismo , Biologia Molecular/métodos , beta-Arrestinas/metabolismo , Animais , Citoplasma/metabolismo , Técnicas de Silenciamento de Genes , Genótipo , Camundongos Knockout , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/metabolismo
4.
EMBO Mol Med ; 7(6): 802-18, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25828351

RESUMO

The metabolic syndrome covers metabolic abnormalities including obesity and type 2 diabetes (T2D). T2D is characterized by insulin resistance resulting from both environmental and genetic factors. A genome-wide association study (GWAS) published in 2010 identified TP53INP1 as a new T2D susceptibility locus, but a pathological mechanism was not identified. In this work, we show that mice lacking TP53INP1 are prone to redox-driven obesity and insulin resistance. Furthermore, we demonstrate that the reactive oxygen species increase in TP53INP1-deficient cells results from accumulation of defective mitochondria associated with impaired PINK/PARKIN mitophagy. This chronic oxidative stress also favors accumulation of lipid droplets. Taken together, our data provide evidence that the GWAS-identified TP53INP1 gene prevents metabolic syndrome, through a mechanism involving prevention of oxidative stress by mitochondrial homeostasis regulation. In conclusion, this study highlights TP53INP1 as a molecular regulator of redox-driven metabolic syndrome and provides a new preclinical mouse model for metabolic syndrome clinical research.


Assuntos
Síndrome Metabólica/fisiopatologia , Mitofagia , Proteínas Nucleares/metabolismo , Animais , Modelos Animais de Doenças , Resistência à Insulina , Camundongos , Proteínas Nucleares/deficiência , Obesidade , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/análise
5.
Pflugers Arch ; 465(4): 543-54, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23149488

RESUMO

Pancreatic ß cells respond to increases in glucose concentration with enhanced metabolism, the closure of ATP-sensitive K(+) channels and electrical spiking. The latter results in oscillatory Ca(2+) influx through voltage-gated Ca(2+) channels and the activation of insulin release. The relationship between changes in cytosolic and mitochondrial free calcium concentration ([Ca(2+)]cyt and [Ca(2+)]mit, respectively) during these cycles is poorly understood. Importantly, the activation of Ca(2+)-sensitive intramitochondrial dehydrogenases, occurring alongside the stimulation of ATP consumption required for Ca(2+) pumping and other processes, may exert complex effects on cytosolic ATP/ADP ratios and hence insulin secretion. To explore the relationship between these parameters in single primary ß cells, we have deployed cytosolic (Fura red, Indo1) or green fluorescent protein-based recombinant-targeted (Pericam, 2mt8RP for mitochondria; D4ER for the ER) probes for Ca(2+) and cytosolic ATP/ADP (Perceval) alongside patch-clamp electrophysiology. We demonstrate that: (1) blockade of mitochondrial Ca(2+) uptake by shRNA-mediated silencing of the uniporter MCU attenuates glucose- and essentially blocks tolbutamide-stimulated, insulin secretion; (2) during electrical stimulation, mitochondria decode cytosolic Ca(2+) oscillation frequency as stable increases in [Ca(2+)]mit and cytosolic ATP/ADP; (3) mitochondrial Ca(2+) uptake rates remained constant between individual spikes, arguing against activity-dependent regulation ("plasticity") and (4) the relationship between [Ca(2+)]cyt and [Ca(2+)]mit is essentially unaffected by changes in endoplasmic reticulum Ca(2+) ([Ca(2+)]ER). Our findings thus highlight new aspects of Ca(2+) signalling in ß cells of relevance to the actions of both glucose and sulphonylureas.


Assuntos
Trifosfato de Adenosina/biossíntese , Sinalização do Cálcio , Cálcio/metabolismo , Células Secretoras de Insulina/metabolismo , Mitocôndrias/metabolismo , Potenciais de Ação , Difosfato de Adenosina/metabolismo , Animais , Canais de Cálcio/metabolismo , Células Cultivadas , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Feminino , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Camundongos
6.
PLoS One ; 7(7): e39722, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22829870

RESUMO

Glucose induces insulin release from pancreatic ß-cells by stimulating ATP synthesis, membrane depolarisation and Ca(2+) influx. As well as activating ATP-consuming processes, cytosolic Ca(2+) increases may also potentiate mitochondrial ATP synthesis. Until recently, the ability to study the role of mitochondrial Ca(2+) transport in glucose-stimulated insulin secretion has been hindered by the absence of suitable approaches either to suppress Ca(2+) uptake into these organelles, or to examine the impact on ß-cell excitability. Here, we have combined patch-clamp electrophysiology with simultaneous real-time imaging of compartmentalised changes in Ca(2+) and ATP/ADP ratio in single primary mouse ß-cells, using recombinant targeted (Pericam or Perceval, respectively) as well as entrapped intracellular (Fura-Red), probes. Through shRNA-mediated silencing we show that the recently-identified mitochondrial Ca(2+) uniporter, MCU, is required for depolarisation-induced mitochondrial Ca(2+) increases, and for a sustained increase in cytosolic ATP/ADP ratio. By contrast, silencing of the mitochondrial Na(+)-Ca(2+) exchanger NCLX affected the kinetics of glucose-induced changes in, but not steady state values of, cytosolic ATP/ADP. Exposure to gluco-lipotoxic conditions delayed both mitochondrial Ca(2+) uptake and cytosolic ATP/ADP ratio increases without affecting the expression of either gene. Mitochondrial Ca(2+) accumulation, mediated by MCU and modulated by NCLX, is thus required for normal glucose sensing by pancreatic ß-cells, and becomes defective in conditions mimicking the diabetic milieu.


Assuntos
Trifosfato de Adenosina/metabolismo , Canais de Cálcio/metabolismo , Glucose/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Células Cultivadas , Feminino , Inativação Gênica , Camundongos
7.
Diabetes ; 60(10): 2533-45, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21885870

RESUMO

OBJECTIVE: Sarco-endoplasmic reticulum Ca(2+)-ATPase 2b (SERCA2b) and SERCA3 pump Ca(2+) in the endoplasmic reticulum (ER) of pancreatic ß-cells. We studied their role in the control of the free ER Ca(2+) concentration ([Ca(2+)](ER)) and the role of SERCA3 in the control of insulin secretion and ER stress. RESEARCH DESIGN AND METHODS: ß-Cell [Ca(2+)](ER) of SERCA3(+/+) and SERCA3(-/-) mice was monitored with an adenovirus encoding the low Ca(2+)-affinity sensor D4 addressed to the ER (D4ER) under the control of the insulin promoter. Free cytosolic Ca(2+) concentration ([Ca(2+)](c)) and [Ca(2+)](ER) were simultaneously recorded. Insulin secretion and mRNA levels of ER stress genes were studied. RESULTS: Glucose elicited synchronized [Ca(2+)](ER) and [Ca(2+)](c) oscillations. [Ca(2+)](ER) oscillations were smaller in SERCA3(-/-) than in SERCA3(+/+) ß-cells. Stimulating cell metabolism with various [glucose] in the presence of diazoxide induced a similar dose-dependent [Ca(2+)](ER) rise in SERCA3(+/+) and SERCA3(-/-) ß-cells. In a Ca(2+)-free medium, glucose moderately raised [Ca(2+)](ER) from a highly buffered cytosolic Ca(2+) pool. Increasing [Ca(2+)](c) with high [K] elicited a [Ca(2+)](ER) rise that was larger but more transient in SERCA3(+/+) than SERCA3(-/-) ß-cells because of the activation of a Ca(2+) release from the ER in SERCA3(+/+) ß-cells. Glucose-induced insulin release was larger in SERCA3(-/-) than SERCA3(+/+) islets. SERCA3 ablation did not induce ER stress. CONCLUSIONS: [Ca(2+)](c) and [Ca(2+)](ER) oscillate in phase in response to glucose. Upon [Ca(2+)](c) increase, Ca(2+) is taken up by SERCA2b and SERCA3. Strong Ca(2+) influx triggers a Ca(2+) release from the ER that depends on SERCA3. SERCA3 deficiency neither impairs Ca(2+) uptake by the ER upon cell metabolism acceleration and insulin release nor induces ER stress.


Assuntos
Cálcio/metabolismo , Células Secretoras de Insulina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Cálcio/farmacologia , Diazóxido/farmacologia , Retículo Endoplasmático/metabolismo , Deleção de Genes , Regulação da Expressão Gênica , Engenharia Genética , Glucose/farmacologia , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Vasodilatadores/farmacologia
8.
Cell Signal ; 23(3): 522-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20849951

RESUMO

Defective insulin secretion is a feature of type 2 diabetes that results from inadequate compensatory increase in ß-cell mass, decreased ß-cell survival and impaired glucose-dependent insulin release. Pancreatic ß-cell proliferation, survival and secretion are thought to be regulated by signalling pathways linked to G-protein coupled receptors (GPCRs), such as the glucagon-like peptide-1 (GLP-1) and the pituitary adenylate cyclase-activating polypeptide (PACAP) receptors. ß-arrestin-1 serves as a multifunctional adaptor protein that mediates receptor desensitization, receptor internalization, and links GPCRs to downstream pathways such as tyrosine kinase Src, ERK1/2 or Akt/PKB. Importantly, recent studies found that ß-arrestin-1 mediates GLP-1 signalling to insulin secretion, GLP-1 antiapoptotic effect by phosphorylating the proapoptotic protein Bad through ERK1/2 activation, and PACAP potentiation of glucose-induced long-lasting ERK1/2 activation controlling IRS-2 expression. Together, these novel findings reveal an important functional role for ß-arrestin-1 in the regulation of insulin secretion and ß-cell survival by GPCRs.


Assuntos
Arrestinas/fisiologia , Diabetes Mellitus/patologia , Células Secretoras de Insulina/fisiologia , Animais , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Avaliação Pré-Clínica de Medicamentos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glucose/fisiologia , Humanos , Células Secretoras de Insulina/patologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glucagon/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Transdução de Sinais , beta-Arrestina 1 , beta-Arrestinas
9.
Methods Mol Biol ; 633: 171-84, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20204627

RESUMO

The endocrine pancreas contains small clusters of 1,000-2,000 neuroendocrine cells termed islets of Langerhans. By secreting insulin, glucagon, or other hormones as circumstances dictate, islets play a central role in the control of glucose homeostasis in mammals. Islets are dispersed throughout the exocrine tissue and comprise only 1-2% of the volume of the whole organ; human pancreas contains about 10(6) islets whereas rodents have approximately 2 x 10(3) islets. The isolation of islets from the exocrine tissue usually begins with digestion of the pancreas with collagenase. Collagenase-containing medium is either injected into the pancreatic duct, and the organ left to digest in situ, or added after isolation of the pancreas and its dissection into small pieces ex vivo. Islets can then be separated from the exocrine tissue by gradient density or by handpicking. The islets obtained can either be used intact, for example, to measure insulin or glucagon secretion or be dispersed into single cells with a Ca(2+)-free medium or with trypsin/dispase. The latter facilitates the introduction of recombinant or trappable probes and microimaging studies of, for example, changes in cytosolic-free Ca(2+) concentration or the dynamics of individual organelles or proteins.


Assuntos
DNA Recombinante/genética , Dissecação/métodos , Corantes Fluorescentes/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Imagem Molecular , Técnicas de Cultura de Tecidos/métodos , Trifosfato de Adenosina/metabolismo , Adenoviridae/genética , Animais , Soluções Tampão , Cálcio/metabolismo , Membrana Celular/metabolismo , Separação Celular , Colagenases/metabolismo , Citosol/metabolismo , Endopeptidases/metabolismo , Engenharia Genética , Humanos , Injeções , Ilhotas Pancreáticas/anatomia & histologia , Camundongos , Microscopia de Fluorescência , Tamanho do Órgão , Pâncreas Exócrino/citologia , Pâncreas Exócrino/metabolismo , Ductos Pancreáticos/citologia , Ductos Pancreáticos/metabolismo , Proteína Quinase C/metabolismo , Proteína Quinase C beta , Transporte Proteico , Tripsina/metabolismo
10.
Endocrinology ; 150(1): 33-45, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18787024

RESUMO

Glucose-induced insulin secretion is classically attributed to the cooperation of an ATP-sensitive potassium (K ATP) channel-dependent Ca2+ influx with a subsequent increase of the cytosolic free Ca2+ concentration ([Ca2+]c) (triggering pathway) and a K ATP channel-independent augmentation of secretion without further increase of [Ca2+]c (amplifying pathway). Here, we characterized the effects of glucose in beta-cells lacking K ATP channels because of a knockout (KO) of the pore-forming subunit Kir6.2. Islets from 1-yr and 2-wk-old Kir6.2KO mice were used freshly after isolation and after 18 h culture to measure glucose effects on [Ca2+]c and insulin secretion. Kir6.2KO islets were insensitive to diazoxide and tolbutamide. In fresh adult Kir6.2KO islets, basal [Ca2+]c and insulin secretion were marginally elevated, and high glucose increased [Ca2+]c only transiently, so that the secretory response was minimal (10% of controls) despite a functioning amplifying pathway (evidenced in 30 mm KCl). Culture in 10 mm glucose increased basal secretion and considerably improved glucose-induced insulin secretion (200% of controls), unexpectedly because of an increase in [Ca2+]c with modulation of [Ca2+]c oscillations. Similar results were obtained in 2-wk-old Kir6.2KO islets. Under selected conditions, high glucose evoked biphasic increases in [Ca2+]c and insulin secretion, by inducing K ATP channel-independent depolarization and Ca2+ influx via voltage-dependent Ca2+ channels. In conclusion, Kir6.2KO beta-cells down-regulate insulin secretion by maintaining low [Ca2+]c, but culture reveals a glucose-responsive phenotype mainly by increasing [Ca2+]c. The results support models implicating a K ATP channel-independent amplifying pathway in glucose-induced insulin secretion, and show that K ATP channels are not the only possible transducers of metabolic effects on the triggering Ca2+ signal.


Assuntos
Cálcio/metabolismo , Glucose/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Canais KATP/deficiência , Canais de Potássio Corretores do Fluxo de Internalização/deficiência , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Animais , Glicemia/metabolismo , Feminino , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/fisiologia , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Oscilometria
11.
Methods ; 46(3): 233-8, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18854212

RESUMO

Ca2+ ions are the most ubiquitous second messenger found in all cells, and play a significant role in controlling regulated secretion from neurons, endocrine, neuroendocrine and exocrine cells. Here, we describe microscopic techniques to image regulated secretion, a target of Ca2+ signalling. The first of these, total internal reflection fluorescence (TIRF), is well suited for optical sectioning at cell-substrate regions with an unusually thin region of fluorescence excitation (<150 nm). It is thus particularly useful for studies of regulated hormone secretion. A brief summary of this approach is provided, as well as a description of the physical basis for the technique and the tools to implement TIRF using a standard fluorescence microscope. We also detail the different fluorescent probes which can be used to detect secretion and how to analyze the data obtained. A comparison between TIRF and other imaging modalities including confocal and multiphoton microscopy is also included.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Exocitose/fisiologia , Microscopia de Fluorescência/métodos , Animais , Membrana Celular/metabolismo , Corantes Fluorescentes , Microscopia Confocal , Microscopia de Fluorescência/instrumentação , Células PC12 , Ratos
12.
J Biol Chem ; 281(51): 39358-69, 2006 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17062568

RESUMO

Forkhead/winged helix box gene, group O-1 (FoxO1) is a member of a family of nuclear transcription factors regulated by insulin-dependent phosphorylation and implicated in the development of the endocrine pancreas. We show here firstly that FoxO1 protein is expressed in both primary mouse islet alpha and beta cells. Examined in clonal alphaTC1-9 cells, insulin caused endogenous FoxO1 to translocate from the nucleus to the cytoplasm. Demonstrating the importance of nuclear exclusion of FoxO1 for the inhibition of preproglucagon gene expression, FoxO1 silencing by RNA interference reduced preproglucagon mRNA levels by >40% in the absence of insulin and abolished the decrease in mRNA levels elicited by the hormone. Electrophoretic mobility shift assay and chromatin immunoprecipitation revealed direct binding of FoxO1 to a forkhead consensus binding site, termed GL3, in the preproglucagon gene promoter region, localized -1798 bp upstream of the transcriptional start site. Deletion or mutation of this site diminished FoxO1 binding and eliminated transcriptional regulation by glucose or insulin. FoxO1 silencing also abolished the acute regulation by insulin, but not glucose, of glucagon secretion, demonstrating the importance of FoxO1 expression in maintaining the alpha-cell phenotype.


Assuntos
Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/fisiologia , Regulação da Expressão Gênica , Insulina/metabolismo , Pâncreas/metabolismo , Proglucagon/metabolismo , Animais , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteína Forkhead Box O1 , Inativação Gênica , Humanos , Camundongos , Fosforilação , Regiões Promotoras Genéticas , Interferência de RNA , RNA Mensageiro/metabolismo
13.
Am J Physiol Cell Physiol ; 290(6): C1503-11, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16381799

RESUMO

Stimulatory concentrations of glucose induce two patterns of cytosolic Ca2+ concentration ([Ca2+]c) oscillations in mouse islets: simple or mixed. In the mixed pattern, rapid oscillations are superimposed on slow ones. In the present study, we examined the role of the membrane potential in the mixed pattern and the impact of this pattern on insulin release. Simultaneous measurement of [Ca2+]c and insulin release from single islets revealed that mixed [Ca2+]c oscillations triggered synchronous oscillations of insulin secretion. Simultaneous recordings of membrane potential in a single beta-cell within an islet and of [Ca2+]c in the whole islet demonstrated that the mixed pattern resulted from compound bursting (i.e., clusters of membrane potential oscillations separated by prolonged silent intervals) that was synchronized in most beta-cells of the islet. Each slow [Ca2+]c increase during mixed oscillations was due to a progressive summation of rapid oscillations. Digital image analysis confirmed the good synchrony between subregions of an islet. By contrast, islets from sarco(endo)plasmic reticulum Ca2+-ATPase isoform 3 (SERCA3)-knockout mice did not display typical mixed [Ca2+]c oscillations in response to glucose. This results from a lack of progressive summation of rapid oscillations and from altered spontaneous electrical activity, i.e., lack of compound bursting, and membrane potential oscillations characterized by lower-frequency but larger-depolarization phases than observed in SERCA3+/+ beta-cells. We conclude that glucose-induced mixed [Ca2+]c oscillations result from compound bursting in all beta-cells of the islet. Disruption of SERCA3 abolishes mixed [Ca2+]c oscillations and augments beta-cell depolarization. This latter observation indicates that the endoplasmic reticulum participates in the control of the beta-cell membrane potential during glucose stimulation.


Assuntos
Sinalização do Cálcio/fisiologia , ATPases Transportadoras de Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Potenciais da Membrana/fisiologia , Animais , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático
14.
J Biol Chem ; 280(27): 25565-70, 2005 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-15878854

RESUMO

Glucose stimulates insulin secretion from pancreatic beta cells by inducing the recruitment and fusion of insulin vesicles to the plasma membrane. However, little is currently known about the mechanism of the initial docking or tethering of insulin vesicles prior to fusion. Here, we examined the role of the SEC6-SEC8 (exocyst) complex, implicated in trafficking of secretory vesicles to fusion sites in the plasma membrane in yeast and in regulating glucose-stimulated insulin secretion from pancreatic MIN6 beta cells. We show first that SEC6 is concentrated on insulin-positive vesicles, whereas SEC5 and SEC8 are largely confined to the cytoplasm and the plasma membrane, respectively. Overexpression of truncated, dominant-negative SEC8 or SEC10 mutants decreased the number of vesicles at the plasma membrane, whereas expression of truncated SEC6 or SEC8 inhibited overall insulin secretion. When single exocytotic events were imaged by total internal reflection fluorescence microscopy, the fluorescence of the insulin surrogate, neuropeptide Y-monomeric red fluorescent protein brightened, diffused, and then vanished with kinetics that were unaffected by overexpression of truncated SEC8 or SEC10. Together, these data suggest that the exocyst complex serves to selectively regulate the docking of insulin-containing vesicles at sites of release close to the plasma membrane.


Assuntos
Proteínas de Transporte/metabolismo , Exocitose/fisiologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Citoplasma/metabolismo , Expressão Gênica , Insulinoma , Ilhotas Pancreáticas/citologia , Mamíferos , Proteínas de Membrana , Camundongos , Mutagênese , Vesículas Secretórias/metabolismo
15.
Diabetes ; 54(6): 1789-97, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15919801

RESUMO

The mechanisms by which hypoglycemia stimulates glucagon release are still poorly understood. In particular, the relative importance of direct metabolic coupling versus paracrine regulation by beta-cell secretory products is unresolved. Here, we compare the responses to glucose of 1) alpha-cells within the intact mouse islet, 2) dissociated alpha-cells, and 3) clonal alphaTC1-9 cells. Free cytosolic concentrations of ATP ([ATP](c)) or Ca(2+) ([Ca(2+)](c)) were imaged using alpha-cell-targeted firefly luciferase or a green fluorescent protein-based Ca(2+) probe ("pericam"), respectively. Consistent with a direct effect of glucose on alpha-cell oxidative metabolism, an increase in glucose concentration (from 0 or 3 mmol/l to 20 mmol/l) increased [ATP](c) by 7-9% in alpha-cells within the intact islet and by approximately 4% in alphaTC1-9 cells. Moreover, glucose also dose-dependently decreased the frequency of [Ca(2+)](c) oscillations in both dissociated alpha-cells and alphaTC1-9 cells. Although the effects of glucose were mimicked by exogenous insulin, they were preserved when insulin signaling was blocked with wortmannin. Addition of ZnCl(2) slightly increased the frequency of [Ca(2+)](c) oscillations but failed to affect glucagon release from either islets or alphaTC1-9 cells under most conditions. We conclude that glucose and insulin, but not Zn(2+) ions, independently suppress glucagon secretion in the mouse.


Assuntos
Glucagon/metabolismo , Glucose/farmacologia , Insulina/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Zinco/farmacologia , Trifosfato de Adenosina/fisiologia , Animais , Cálcio/fisiologia , Linhagem Celular , Células Cultivadas , Células Clonais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA