Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13769, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877052

RESUMO

The lack of non-invasive methods for detection of early metastasis is a crucial reason for the poor prognosis of lung cancer (LC) liver metastasis (LM) patients. In this study, the goal was to identify circulating biomarkers based on a biomarker model for the early diagnosis and monitoring of patients with LCLM. An 8-gene panel identified in our previous study was validated in CTC, cfRNA and exosomes isolated from primary lung cancer with & without metastasis. Further multivariate analysis including PCA & ROC was performed to determine the sensitivity and specificity of the biomarker panel. Model validation cohort (n = 79) was used to verify the stability of the constructed predictive model. Further, clinic-pathological factors, survival analysis and immune infiltration correlations were also performed. In comparison to our previous tissue data, exosomes demonstrated a good discriminative value with an AUC of 0.7247, specificity (72.48%) and sensitivity (96.87%) for the 8-gene panel. Further individual gene patterns led us to a 5- gene panel that showed an AUC of 0.9488 (p = < 0.001) and 0.9924 (p = < 0.001) respectively for tissue and exosomes. Additionally, on validating the model in a larger cohort a risk score was obtained (RS > 0.2) for prediction of liver metastasis with an accuracy of 95%. Survival analysis and immune filtration markers suggested that four exosomal markers were independently associated with poor overall survival. We report a novel blood-based exosomal biomarker panel for early diagnosis, monitoring of therapeutic response, and prognostic evaluation of patients with LCLM.


Assuntos
Algoritmos , Biomarcadores Tumorais , Exossomos , Neoplasias Hepáticas , Neoplasias Pulmonares , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/diagnóstico , Exossomos/genética , Exossomos/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Biomarcadores Tumorais/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Prognóstico , Diagnóstico Diferencial
2.
Sci Rep ; 14(1): 49, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168595

RESUMO

Glycogen synthase kinase-3ß (GSK3ß) is a pivotal protein kinase implicated in a spectrum of debilitating diseases, encompassing cancer, diabetes, and neurodegenerative disorders. While the therapeutic potential of GSK3ß inhibition is widely recognized, there remains an unmet need for a rigorous, systematic analysis probing the theoretical inhibition dynamics of a comprehensive library of indirubin derivatives against GSK3ß using advanced computational methodologies. Addressing this gap, this study embarked on an ambitious endeavor, leveraging indirubin-a renowned scaffold-as a template to curate a vast library of 1000 indirubin derivatives from PubChem. These were enriched with varied substitutions and modifications, identified via a structure similarity search with a Tanimoto similarity threshold of 85%. Harnessing a robust virtual screening workflow, we meticulously identified the top 10 contenders based on XP docking scores. Delving deeper, we gauged the binding free energy differentials (ΔGBind) of these hits, spotlighting the top three compounds that showcased unparalleled binding prowess. A comparative pharmacophore feature mapping with the reference inhibitor OH8, co-crystallized with GSK3ß (PDB ID: 6Y9R), was undertaken. The binding dynamics of these elite compounds were further corroborated with 100 ns molecular dynamics simulations, underlining their stable and potent interactions with GSK3ß. Remarkably, our findings unveil that these indirubin derivatives not only match but, in certain scenarios, surpass the binding affinity and specificity of OH8. By bridging this research chasm, our study amplifies the therapeutic promise of indirubin derivatives, positioning them as frontrunners in the quest for groundbreaking GSK3ß inhibitors, potentially revolutionizing treatments for a myriad of ailments.


Assuntos
Indóis , Simulação de Dinâmica Molecular , Glicogênio Sintase Quinase 3 beta , Fluxo de Trabalho , Indóis/farmacologia , Simulação de Acoplamento Molecular
3.
Sci Rep ; 14(1): 2363, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287048

RESUMO

Colorectal cancer (CRC) treatment strategies encompass a triad of medical interventions: surgery, radiotherapy, and chemotherapy. Among these, the use of chemotherapy, specifically 5-fluorouracil (5-FU), has become a cornerstone in CRC management. However, it is imperative to explore novel approaches that harness the synergistic potential of chemotherapy agents alongside adjunctive compounds to mitigate the severe adverse effects that often accompany treatment. In light of this pressing need, this study focuses on evaluating Kaempferol (KMP) in combination with 5-FU in a DMH-induced CRC animal model, scrutinizing its impact on haematological indices, organ health, and gastrointestinal, hepatotoxic, and nephrotoxic effects. Remarkably, KMP demonstrated haemato-protective attributes and exerted an immunomodulatory influence, effectively counteracting 5-FU-induced damage. Furthermore, organ assessments affirm the safety profile of the combined treatments while suggesting KMP's potential role in preserving the structural integrity of the intestine, and spleen. Histopathological assessments unveiled KMP's capacity to ameliorate liver injury and mitigate CRC-induced renal impairment. These multifaceted findings underscore KMP's candidacy as a promising adjunctive therapeutic option for CRC, underlining the pivotal need for personalized therapeutic strategies that concurrently optimize treatment efficacy and safeguard organ health. KMP holds tremendous promise in elevating the paradigm of CRC management.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Animais , Neoplasias Colorretais/patologia , Quempferóis/farmacologia , Apoptose , Fluoruracila/farmacologia , Antineoplásicos/efeitos adversos
4.
J Cancer Res Ther ; 19(Suppl 2): S649-S657, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38384034

RESUMO

BACKGROUND: Though cancer associated fibroblasts (CAFs), being a main component of tumor microenvironment (TME), are known to modulate immune response through secretion of various growth hormones, exosomes carrying miRNAs and cytokines; their effect on dendritic cells (DCs) are yet to be elucidated. Thus, aim of this study was to assess the effect of miRNAs and cytokines released by lung-CAFs and to evaluate immunomodulatory potential of curcumin on DC maturation through modulating their TME. MATERIAL AND METHODS: To check the effect of CAFs derived exosomes on DC maturation, we cultured imDCs in the presence of CAFs derived conditioned media (CAFs-CM) and characterized by the presence of maturation markers CD80, CD83, CD86 and CTLA4 using qRT-PCR. Additionally, expression of miR-221, miR-222, miR-155, miR-142-3p and miR-146a was assessed to evaluate the role of epigenetic regulators on DC maturation. Likewise, cytokine profiling of CAFs-CM as well as CAFs-CM treated with curcumin was also conducted using ELISA. RESULTS: Results revealed the generation of regulatory DCs which were characterized by decreased expression of maturation markers in the presence of CAFs-CM. In addition, such DCs showed higher expression of epigenetic regulator miR-146a which was positively correlated with increased expression of anti-inflammatory cytokines like IL-6, IL-10, TGF-ß and decreased expression of TNF-α (pro-inflammatory). Moreover, curcumin had the potential to convert regulatory DCs generated by CAFs into mDCs, which were characterized by high expression of co-stimulatory molecules, low expression of CTLA4, lower levels of immune suppressive cytokines production and lower levels of miR-146a. CONCLUSION: Collectively, these findings provide insight into understanding the immunomodulatory role of curcumin in targeting CAFs and modulating TME, thus enhancing antitumor immune response in DC based therapy.


Assuntos
Fibroblastos Associados a Câncer , Curcumina , MicroRNAs , Neoplasias , Humanos , Fibroblastos Associados a Câncer/patologia , Curcumina/farmacologia , Antígeno CTLA-4 , Proliferação de Células/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA