Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; : e202400281, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38945837

RESUMO

The cancer cell mitochondrion could be a promising target for the development of new anticancer agents. 16-([3-chloro-5-(trifluoromethyl)-phenyl]carbamoylamino)hexadecanoic acid (2) is a novel aryl-urea fatty acid that targets the mitochondrion in MDA-MB-231 breast cancer cells and activates cell death. In the present study, the relationships between alkyl chain length in 2 analogues, mitochondrial disruption and cell killing were evaluated. The chain-contracted C13-analogue 7c optimally disrupted the mitochondrial membrane potential (IC50 4.8±0.8 µM). In addition, annexin V-FITC/7-AAD assays demonstrated that 7c was most effective cell killing analogue and C11 BODIPY (581/591) assays demonstrated that 7c was also most effective in generating reactive oxygen species in MDA-MB-231 cells. Together, carbon chain length is a key factor that determine the capacity of 2 analogues to disrupt the mitochondrial membrane, induce the production of reactive oxygen species and kill breast cancer cells. As an aryl-urea with enhanced activity and improved drug-like properties, 7c may be a suitable lead molecule for entry into a program of development of these molecules as anticancer agents.

2.
Chemistry ; : e202400931, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838073

RESUMO

Mitochondrial uncoupling by small molecule protonophores is a promising strategy for developing novel anticancer agents. Recently, aryl urea substituted fatty acids (aryl ureas) were identified as a new class of protonophoric anticancer agents. To mediate proton transport these molecules self-assemble into membrane-permeable anionic dimers in which intermolecular hydrogen bonds between the carboxylate and aryl-urea anion receptor delocalise the negative charge across the aromatic π-system. In this work, we extend the aromatic π-system by introducing a second phenyl substituent to the aryl urea scaffold and compare the proton transport mechanisms and mitochondrial uncoupling actions of these compounds to their monoaryl analogues. It was found that incorporation of meta-linked phenyl substituents into the aryl urea scaffold enhanced proton transport in vesicles and demonstrated superior capacity to depolarise mitochondria, inhibit ATP production and reduce the viability of MDA-MB-231 breast cancer cells. In contrast, diphenyl ureas linked through a 1,4-distribution across the phenyl ring displayed diminished proton transport activity, despite both diphenyl urea isomers possessing similar binding affinities for carboxylates. Mechanistic studies suggest that inclusion of a second aryl ring changes the proton transport mechanism, presumably due to steric factors that impose higher energy penalties for dimer formation.

3.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928494

RESUMO

Pancreatic ductal adenocarcinoma (PDAC)'s resistance to therapies is mainly attributed to pancreatic cancer stem cells (PCSCs). Mitochondria-impairing agents can be used to hamper PCSC propagation and reduce PDAC progression. Therefore, to develop an efficient vector for delivering drugs to the mitochondria, we synthesized tris(3,5-dimethylphenyl)phosphonium-conjugated palmitic acid. Triphenylphosphonium (TPP) is a lipophilic cationic moiety that promotes the accumulation of conjugated agents in the mitochondrion. Palmitic acid (PA), the most common saturated fatty acid, has pro-apoptotic activity in different types of cancer cells. TPP-PA was prepared by the reaction of 16-bromopalmitic acid with TPP, and its structure was characterized by 1H and 13C NMR and HRMS. We compared the proteomes of TPP-PA-treated and untreated PDAC cells and PCSCs, identifying dysregulated proteins and pathways. Furthermore, assessments of mitochondrial membrane potential, intracellular ROS, cardiolipin content and lipid peroxidation, ER stress, and autophagy markers provided information on the mechanism of action of TPP-PA. The findings showed that TPP-PA reduces PDAC cell proliferation through mitochondrial disruption that leads to increased ROS, activation of ER stress, and autophagy. Hence, TPP-PA might offer a new approach for eliminating both the primary population of cancer cells and PCSCs, which highlights the promise of TPP-derived compounds as anticancer agents for PDAC.


Assuntos
Mitocôndrias , Compostos Organofosforados , Ácido Palmítico , Neoplasias Pancreáticas , Proteômica , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Ácido Palmítico/farmacologia , Ácido Palmítico/química , Compostos Organofosforados/farmacologia , Compostos Organofosforados/química , Proteômica/métodos , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Proliferação de Células/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Proteoma/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Autofagia/efeitos dos fármacos
4.
Org Biomol Chem ; 22(24): 4868-4876, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764358

RESUMO

The N,N'-dimethylation of a diphenylsquaramide induces a conformational change in the orientation of the phenyl rings. This has been exploited to create a series of bis-urea, -thiourea and -squaramide anionophores. The compounds were shown to bind to Cl- using proton NMR titration techniques and to transport H+/Cl- through the lipid bilayers, whereas a non-methylated analogue displayed limited transport activity. Despite their potency in transport studies, the series had a negligible impact on cancer cell viability.

5.
Chem Biol Interact ; 396: 111042, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38735455

RESUMO

Ionic liquids (ILs) are a class of low melting point salts with physicochemical properties suitable for a range of industrial applications such as chemical processing and battery design. Major challenges to the wide-scale adoption of ILs in industry include their eco- and cytotoxic effects, however, this opens up the possibility of the use of ILs use as novel anticancer agents. Understanding the structural features that promote IL cytotoxicity is therefore important. Key structural features that can impact IL cytotoxicity include size and lipophilicity of the cationic head group. In this study, the cytotoxic effects of acridinium-based ILs containing relatively large tri- and tetracyclic cations were evaluated. It was found that 9-phenylacridinium-based ILs are potent cytotoxic agents that reduce the viability of human MDA-MB-231 breast cancer cells with IC50 concentrations in the nanomolar range. In mechanistic studies, it was found that unlike the pyridinium-based analogue, [C16Py][I], acridinium-based ILs did not inhibit oxidative phosphorylation or induce reactive oxygen species formation, and may instead target other mitochondrial processes or components such as mitochondrial DNA.


Assuntos
Acridinas , Líquidos Iônicos , Espécies Reativas de Oxigênio , Humanos , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Acridinas/química , Acridinas/farmacologia , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Fosforilação Oxidativa/efeitos dos fármacos
6.
Int J Biochem Cell Biol ; 171: 106571, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608921

RESUMO

Current treatment options for triple-negative breast cancer (TNBC) are limited to toxic drug combinations of low efficacy. We recently identified an aryl-substituted fatty acid analogue, termed CTU, that effectively killed TNBC cells in vitro and in mouse xenograft models in vivo without producing toxicity. However, there was a residual cell population that survived treatment. The present study evaluated the mechanisms that underlie survival and renewal in CTU-treated MDA-MB-231 TNBC cells. RNA-seq profiling identified several pro-inflammatory signaling pathways that were activated in treated cells. Increased expression of cyclooxygenase-2 and the cytokines IL-6, IL-8 and GM-CSF was confirmed by real-time RT-PCR, ELISA and Western blot analysis. Increased self-renewal was confirmed using the non-adherent, in vitro colony-forming mammosphere assay. Neutralizing antibodies to IL-6, IL-8 and GM-CSF, as well as cyclooxygenase-2 inhibition suppressed the self-renewal of MDA-MB-231 cells post-CTU treatment. IPA network analysis identified major NF-κB and XBP1 gene networks that were activated by CTU; chemical inhibitors of these pathways and esiRNA knock-down decreased the production of pro-inflammatory mediators. NF-κB and XBP1 signaling was in turn activated by the endoplasmic reticulum (ER)-stress sensor inositol-requiring enzyme 1 (IRE1), which mediates the unfolded protein response. Co-treatment with an inhibitor of IRE1 kinase and RNase activities, decreased phospho-NF-κB and XBP1s expression and the production of pro-inflammatory mediators. Further, IRE1 inhibition also enhanced apoptotic cell death and prevented the activation of self-renewal by CTU. Taken together, the present findings indicate that the IRE1 ER-stress pathway is activated by the anti-cancer lipid analogue CTU, which then activates secondary self-renewal in TNBC cells.


Assuntos
Sobrevivência Celular , Estresse do Retículo Endoplasmático , Endorribonucleases , Proteínas Serina-Treonina Quinases , Humanos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Endorribonucleases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ácidos Graxos/metabolismo , Animais , Células MDA-MB-231
7.
Biomedicines ; 12(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38398064

RESUMO

Autophagy is a form of programmed cell degradation that enables the maintenance of homeostasis in response to extracellular stress stimuli. Autophagy is primarily activated by starvation and mediates the degradation, removal, or recycling of cell cytoplasm, organelles, and intracellular components in eukaryotic cells. Autophagy is also involved in the pathogenesis of human diseases, including several cancers. Human uveal melanoma (UM) is the primary intraocular malignancy in adults and has an extremely poor prognosis; at present there are no effective therapies. Several studies have suggested that autophagy is important in UM. By understanding the mechanisms of activation of autophagy in UM it may be possible to develop biomarkers to provide more definitive disease prognoses and to identify potential drug targets for the development of new therapeutic strategies. This article reviews the current information regarding autophagy in UM that could facilitate biomarker and drug development.

8.
Food Chem Toxicol ; 183: 114202, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007213

RESUMO

Ionic liquids (ILs) are a class of low melting point salts with physicochemical properties that make them suitable for a range of industrial applications. Accumulating evidence suggests that certain ILs are cytotoxic and potential environmental pollutants, thus understanding the structural features that promote IL cytotoxicity is important. Amphiphilic ionic liquids (AmILs), a class of ILs with lipophilic N-alkyl chains, containing aromatic head groups are generally more cytotoxic than their aliphatic counterparts, however the impact of other head group properties are less clear. This study therefore sought to provide new structure activity relationship (SAR) insights regarding the role of the cationic head group on AmIL cytotoxicity. A series of AmILs bearing a range of structurally diverse aromatic cations varying in size, charge, and lipophilicity was synthesised and screened against human MDA-MB-231 breast cancer cells. It was found that larger and more lipophilic head groups increased cytotoxicity, although the magnitude of the changes were modest. The mitochondrial effects of representative ILs were assessed. The AmILs induced mitochondrial dysfunction in MDA-MB-231 cells at cytotoxic concentrations, suggesting that they target mitochondria. The new SAR information from this study may assist in the design of AmILs with controlled cytotoxicity.


Assuntos
Líquidos Iônicos , Humanos , Líquidos Iônicos/toxicidade , Líquidos Iônicos/química , Estrutura de Grupo , Relação Estrutura-Atividade , Cátions/química
9.
Biomolecules ; 13(8)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37627266

RESUMO

In respiring mitochondria, the proton gradient across the inner mitochondrial membrane is used to drive ATP production. Mitochondrial uncouplers, which are typically weak acid protonophores, can disrupt this process to induce mitochondrial dysfunction and apoptosis in cancer cells. We have shown that bisaryl urea-based anion transporters can also mediate mitochondrial uncoupling through a novel fatty acid-activated proton transport mechanism, where the bisaryl urea promotes the transbilayer movement of deprotonated fatty acids and proton transport. In this paper, we investigated the impact of replacing the urea group with squaramide, amide and diurea anion binding motifs. Bisaryl squaramides were found to depolarise mitochondria and reduce MDA-MB-231 breast cancer cell viability to similar extents as their urea counterpart. Bisaryl amides and diureas were less active and required higher concentrations to produce these effects. For all scaffolds, the substitution of the bisaryl rings with lipophilic electron-withdrawing groups was required for activity. An investigation of the proton transport mechanism in vesicles showed that active compounds participate in fatty acid-activated proton transport, except for a squaramide analogue, which was sufficiently acidic to act as a classical protonophore and transport protons in the absence of free fatty acids.


Assuntos
Neoplasias , Prótons , Amidas , Ânions , Transporte Biológico , Ácidos Graxos , Mitocôndrias , Linhagem Celular Tumoral , Humanos
10.
Blood ; 142(23): 1960-1971, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37647654

RESUMO

Sorafenib maintenance improves outcomes after hematopoietic cell transplant (HCT) for patients with FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) acute myeloid leukemia (AML). Although promising outcomes have been reported for sorafenib plus intensive chemotherapy, randomized data are limited. This placebo-controlled, phase 2 study (ACTRN12611001112954) randomized 102 patients (aged 18-65 years) 2:1 to sorafenib vs placebo (days 4-10) combined with intensive induction: idarubicin 12 mg/m2 on days 1 to 3 plus either cytarabine 1.5 g/m2 twice daily on days 1, 3, 5, and 7 (18-55 years) or 100 mg/m2 on days 1 to 7 (56-65 years), followed by consolidation and maintenance therapy for 12 months (post-HCT excluded) in newly diagnosed patients with FLT3-ITD AML. Four patients were excluded in a modified intention-to-treat final analysis (3 not commencing therapy and 1 was FLT3-ITD negative). Rates of complete remission (CR)/CR with incomplete hematologic recovery were high in both arms (sorafenib, 78%/9%; placebo, 70%/24%). With 49.1-months median follow-up, the primary end point of event-free survival (EFS) was not improved by sorafenib (2-year EFS 47.9% vs 45.4%; hazard ratio [HR], 0.87; 95% confidence interval [CI], 0.51-1.51; P = .61). Two-year overall survival (OS) was 67% in the sorafenib arm and 58% in the placebo arm (HR, 0.76; 95% CI, 0.42-1.39). For patients who received HCT in first remission, the 2-year OS rates were 84% and 67% in the sorafenib and placebo arms, respectively (HR, 0.45; 95% CI, 0.18-1.12; P = .08). In exploratory analyses, FLT3-ITD measurable residual disease (MRD) negative status (<0.001%) after induction was associated with improved 2-year OS (83% vs 60%; HR, 0.4; 95% CI, 0.17-0.93; P = .028). In conclusion, routine use of pretransplant sorafenib plus chemotherapy in unselected patients with FLT3-ITD AML is not supported by this study.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Sorafenibe , Tirosina Quinase 3 Semelhante a fms/genética , Estudos Retrospectivos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética
11.
Biochimie ; 212: 114-122, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37105300

RESUMO

Uveal melanoma (UM) is the primary ocular cancer with upto 50% of patients dying from metastasis. Although rare, it is deadly as patients with metastatic UM seldom survive beyond 18 months after diagnosis. Chemotherapeutics have no proven efficacy, including immunotherapies that have been tried as current treatment options but produce marginal improvement in overall survival for UM patients. While therapeutics are low in efficacy, there is an urgent need to explore novel targets in the treatment of UM. This review provides an update on the contribution of inflammation to UM with a focus on exploring potential therapeutic targets related to the inflammatory tumour microenvironment. As a tumour promoting event, inflammation is one of the hallmarks of cancers. The presence of the inflammatory phenotype characterised by the abundance of immune mediators and proinflammatory cytokines surrounding UM tumours, is a potential area to explore novel therapeutic targets. Despite decades of investigation regarding the role UM tumour microenvironment has played, that of inflammation in UM progression remains poorly understood. With advancement of technologies, an understanding of the prognosis of UM has been accelerated. Excitingly, novel therapeutic targets related to the inflammatory tumour microenvironment have been identified and relevant studies are underway in their preliminary phases, illustrating optimistic results.


Assuntos
Melanoma , Neoplasias Uveais , Humanos , Melanoma/terapia , Neoplasias Uveais/terapia , Neoplasias Uveais/genética , Prognóstico , Inflamação , Microambiente Tumoral
12.
Eur J Pharmacol ; 939: 175470, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36543287

RESUMO

Mitochondria in tumor cells are functionally different from those in normal cells and could be targeted to develop new anticancer agents. We showed recently that the aryl-ureido fatty acid CTU is the prototype of a new class of mitochondrion-targeted agents that kill cancer cells by increasing the production of reactive oxygen species (ROS), activating endoplasmic reticulum (ER)-stress and promoting apoptosis. However, prolonged treatment with high doses of CTU were required for in vivo anti-tumor activity. Thus, new strategies are now required to produce agents that have enhanced anticancer activity over CTU. In the present study we prepared a novel aryl-urea termed 3-thiaCTU, that contained an in-chain sulfur heteroatom, for evaluation in tumor cell lines and in mice carrying tumor xenografts. The principal finding to emerge was that 3-thiaCTU was several-fold more active than CTU in the activation of aryl-urea mechanisms that promoted cancer cell killing. Thus, in in vitro studies 3-thiaCTU disrupted the mitochondrial membrane potential, increased ROS production, activated ER-stress and promoted tumor cell apoptosis more effectively than CTU. 3-ThiaCTU was also significantly more active than CTUin vivo in mice that carried MDA-MB-231 cell xenografts. Compared to CTU, 3-thiaCTU prevented tumor growth more effectively and at much lower doses. These findings indicate that, in comparison to CTU, 3-thiaCTU is an aryl-urea with markedly enhanced activity that could now be suitable for development as a novel anticancer agent.


Assuntos
Antineoplásicos , Ácidos Graxos , Humanos , Animais , Camundongos , Ácidos Graxos/farmacologia , Ácidos Graxos/metabolismo , Ureia/farmacologia , Ureia/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Potencial da Membrana Mitocondrial
13.
J Pharmacol Exp Ther ; 382(3): 246-255, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35779948

RESUMO

Aberrations in spinal glycinergic signaling are a feature of pain chronification. Normalizing these changes by inhibiting glycine transporter (GlyT)-2 is a promising treatment strategy. However, existing GlyT2 inhibitors (e.g., ORG25543) are limited by narrow therapeutic windows and severe dose-limiting side effects, such as convulsions, and are therefore poor candidates for clinical development. Here, intraperitoneally administered oleoyl-D-lysine, a lipid-based GlyT2 inhibitor, was characterized in mouse models of acute (hot plate), inflammatory (complete Freund's adjuvant), and chronic neuropathic (chronic constriction injury) pain. Side effects were also assessed on a numerical rating score, convulsions score, for motor incoordination (rotarod), and for respiratory depression (whole body plethysmography). Oleoyl-D-lysine produced near complete antiallodynia for chronic neuropathic pain, but no antiallodynia/analgesia in inflammatory or acute pain. No side effects were seen at the peak analgesic dose, 30 mg/kg. Mild side effects were observed at the highest dose, 100 mg/kg, on the numerical rating score, but no convulsions. These results contrasted markedly with ORG25543, which reached less than 50% reduction in allodynia score only at the lethal/near-lethal dose of 50 mg/kg. At this dose, ORG25543 caused maximal side effects on the numerical rating score and severe convulsions. Oleoyl-D-lysine (30 mg/kg) did not cause any respiratory depression, a problematic side effect of opiates. These results show the safe and effective reversal of neuropathic pain in mice by oleoyl-D-lysine and provide evidence for a distinct role of glycine in chronic pain over acute or short-term pain conditions. SIGNIFICANCE STATEMENT: Partially inhibiting glycine transporter (GlyT)-2 can alleviate chronic pain by restoring lost glycinergic function. Novel lipid-based GlyT2 inhibitor ol-D-lys is safe and effective in alleviating neuropathic pain, but not inflammatory or acute pain. Clinical application of GlyT2 inhibitors may be better suited to chronic neuropathic pain over other pain aetiologies.


Assuntos
Dor Aguda , Dor Crônica , Neuralgia , Insuficiência Respiratória , Animais , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Glicina , Hiperalgesia/tratamento farmacológico , Lipídeos , Lisina/farmacologia , Lisina/uso terapêutico , Masculino , Camundongos , Neuralgia/tratamento farmacológico , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/tratamento farmacológico
14.
ACS Chem Biol ; 17(8): 2065-2073, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35854216

RESUMO

Targeting the cancer cell mitochondrion is a promising approach for developing novel anticancer agents. The experimental anticancer agent N,N'-bis(3,5-dichlorophenyl)urea (SR4) induces apoptotic cell death in several cancer cell lines by uncoupling mitochondrial oxidative phosphorylation (OxPhos) using a protein-free mechanism. However, the precise mechanism by which SR4 depolarizes mitochondria is unclear because SR4 lacks an acidic functional group typically found in protein-independent uncouplers. Recently, it was shown that structurally related thioureas can facilitate proton transport across lipid bilayers by a fatty acid-activated mechanism, in which the fatty acid acts as the site of protonation/deprotonation and the thiourea acts as an anion transporter that shuttles deprotonated fatty acids across the phospholipid bilayer to enable proton leak. In this paper, we show that SR4-mediated proton transport is enhanced by the presence of free fatty acids in the lipid bilayer, indicating that SR4 uncouples mitochondria through the fatty acid-activated mechanism. This mechanistic insight was used to develop a library of substituted bisaryl ureas for structure-activity relationship studies and subsequent cell testing. It was found that lipophilic electron-withdrawing groups on bisaryl ureas enhanced electrogenic proton transport via the fatty acid-activated mechanism and had the capacity to depolarize mitochondria and reduce the viability of MDA-MB-231 breast cancer cells. The most active compound in the series reduced cell viability with greater potency than SR4 and was more effective at inhibiting adenosine triphosphate production.


Assuntos
Antineoplásicos , Ácidos Graxos , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Prótons , Relação Estrutura-Atividade , Ureia/metabolismo , Ureia/farmacologia
15.
Cancer Lett ; 526: 131-141, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822928

RESUMO

The cancer cell mitochondrion is functionally different from that in normal cells and could be targeted to develop novel experimental therapeutics. The aryl-ureido fatty acid CTU (16({[4-chloro-3-(trifluoromethyl)phenyl]-carbamoyl}amino)hexadecanoic acid) is the prototype of a new class of mitochondrion-targeted agents that kill cancer cells. Here we show that CTU rapidly depolarized the inner mitochondrial membrane, selectively inhibited complex III of the electron transport chain and increased reactive oxygen species (ROS) production. From RNA-seq analysis, endoplasmic reticulum (ER)-stress was a major activated pathway in CTU-treated cells and in MDA-MB-231 tumor xenografts from CTU-treated nu/nu mice. Mitochondrion-derived ROS activated the PERK-linked ER-stress pathway and induced the BH3-only protein NOXA leading to outer mitochondrial membrane (OMM) disruption. The lipid peroxyl scavenger α-tocopherol attenuated CTU-dependent ER-stress and apoptosis which confirmed the critical role of ROS. Oleic acid protected against CTU-mediated apoptosis by activating Mcl-1 expression, which increased NOXA sequestration and prevented OMM disruption. Taken together, CTU both uncouples mitochondrial electron transport and activates ROS production which promotes ER-stress-dependent OMM disruption and tumor cell death. Dual-mitochondrial targeting agents like CTU offer a novel approach for development of new anti-cancer therapeutics.


Assuntos
Estresse do Retículo Endoplasmático/imunologia , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose , Feminino , Humanos , Camundongos
16.
Biochem Pharmacol ; 192: 114726, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34389322

RESUMO

Migration and invasion promote tumor cell metastasis, which is the leading cause of cancer death. At present there are no effective treatments. Epidemiological studies have suggested that ω-3 polyunsaturated fatty acids (PUFA) may decrease cancer aggressiveness. In recent studies epoxide metabolites of ω-3 PUFA exhibited anti-cancer activity, although increased in vivo stability is required to develop useful drugs. Here we synthesized novel stabilized ureido-fatty acid ω-3 epoxide isosteres and found that one analogue - p-tolyl-ureidopalmitic acid (PTU) - inhibited migration and invasion by MDA-MB-231 breast cancer cells in vitro and in vivo in xenografted nu/nu mice. From proteomics analysis of PTU-treated cells major regulated pathways were linked to the actin cytoskeleton and actin-based motility. The principal finding was that PTU impaired the formation of actin protrusions by decreasing the secretion of Wnt5a, which dysregulated the Wnt/planar cell polarity (PCP) pathway and actin cytoskeletal dynamics. Exogenous Wnt5a restored invasion and Wnt/PCP signalling in PTU-treated cells. PTU is the prototype of a novel class of agents that selectively dysregulate the Wnt/PCP pathway by inhibiting Wnt5a secretion and actin dynamics to impair MDA-MB-231 cell migration and invasion.


Assuntos
Citoesqueleto/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Transdução de Sinais/fisiologia , Proteína Wnt-5a/antagonistas & inibidores , Proteína Wnt-5a/metabolismo , Animais , Linhagem Celular Tumoral , Citoesqueleto/efeitos dos fármacos , Ácidos Graxos Ômega-3/química , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/patologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
17.
Chem Biol Interact ; 338: 109401, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33556367

RESUMO

The tyrosine kinase inhibitor sorafenib (SOR) is being used increasingly in combination with other anticancer agents like paclitaxel, but this increases the potential for drug toxicity. SOR inhibits several human CYPs, including CYP2C8, which is a major enzyme in the elimination of oncology drugs like paclitaxel and imatinib. It has been reported that CYP2C8 inhibition by SOR in human liver microsomes is potentiated by NADPH-dependent biotransformation. This implicates a SOR metabolite in enhanced inhibition, although the identity of that metabolite is presently unclear. The present study evaluated the capacity of the major N-oxide metabolite of SOR (SNO) to inhibit CYP2C8-dependent paclitaxel 6α-hydroxylation. The IC50 of SNO against CYP2C8 activity was found to be 3.7-fold lower than that for the parent drug (14 µM versus 51 µM). In molecular docking studies, both SOR and SNO interacted with active site residues in CYP2C8, but four additional major hydrogen and halogen bonding interactions were identified between SNO and amino acids in the B-B' loop region and helixes F' and I that comprise the catalytic region of the enzyme. In contrast, the binding of both SOR and SNO to active site residues in the closely related human CYP2C9 enzyme was similar, as were the IC50s determined against CYP2C9-mediated losartan oxidation. These findings suggest that the active metabolite SNO could impair the elimination of coadministered drugs that are substrates for CYP2C8, and mediate toxic adverse events, perhaps in those individuals in whom SNO is formed extensively.


Assuntos
Inibidores do Citocromo P-450 CYP2C8/farmacologia , Citocromo P-450 CYP2C8/química , Citocromo P-450 CYP2C8/metabolismo , Metaboloma , Simulação de Acoplamento Molecular , Óxidos/farmacologia , Sorafenibe/metabolismo , Sorafenibe/farmacologia , Adulto , Biotransformação/efeitos dos fármacos , Domínio Catalítico , Humanos , Losartan/farmacologia , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Pessoa de Meia-Idade , Oxirredução , Especificidade por Substrato/efeitos dos fármacos
18.
Chem Phys Lipids ; 232: 104952, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32814085

RESUMO

Branched chain fatty acids (BCFAs) are a class of fatty acid with promising anticancer activity. The BCFA 13-methyltetradecanoic acid (13-MTD) inhibits tumour growth in vivo without toxicity but efficacy is limited by moderate potency, a property shared by all known BCFAs. The mechanism of action of BCFAs has not been fully elucidated, and in the absence of a clearly defined target optimisation of BCFA potency must rely on structure-activity relationships. Our current understanding of the structural features that promote BCFA anticancer activity is limited by the low structural diversity of reported BCFAs.The aim of this study was to examine the effects of two new structural modifications- unsaturation and branching group size- on BCFA activity. Thus, homologous series of saturated and cis-Δ11 unsaturated BCFAs were synthesised bearing methyl, ethyl, propyl and butyl branching groups, and were screened in vitro for activity against three human cancer cell lines. Potencies of the new BCFAs were compared to 13-MTD and an unbranched monounstaurated fatty acid (MUFA) bearing a cis-Δ11 double bond. The principal findings to emerge were that the anticancer activity of BCFAs was adversly affected by larger branching groups but significantly improved by incorporation of a cis-Δ11 double bond into the BCFA alkyl chain. This study provides new structure-activity relationship insights that may be used to develop BCFAs with improved potency and therapeutic potential.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Alquilação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Relação Estrutura-Atividade
19.
RSC Med Chem ; 11(1): 118-124, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33479611

RESUMO

A library of novel tricyclic amides has been synthesised via the Ritter reaction from ß-caryophyllene 1 and its monoepoxy derivative 4. The compounds were assessed for antiproliferative activities against the aggressive MDA-MB-231 breast cancer cell line. Of the synthesised compounds, eight were active. 3c and 6b were the most potent and inhibited proliferation with IC50 of 9.7 and 8.2 µM, respectively. Mechanistic studies revealed differences in their antiproliferative actions. 6b inhibited cell cycle progression and induced predominantly apoptotic cell death. In contrast, 3c did not affect cell cycle kinetics and favoured necrotic over apoptotic pathways. Screening against mammalian cells (VERO cells) indicates that 3c and 6b were more active towards MDA-MB-231 cells than noncancerous cells. Facile synthesis and biological results suggest that these caryophyllene derived amides are viable lead compounds for further development.

20.
ChemMedChem ; 15(2): 247-255, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31773850

RESUMO

Targeting the tumor cell mitochondrion could produce novel anticancer agents. We designed an aryl-urea fatty acid (1 g; 16({[4-chloro-3-(trifluoromethyl)phenyl]carbamoyl}amino)hexadecanoic acid) that disrupted the mitochondrion and decreased MDA-MB-231 breast cancer cell viability. To optimize the aryl-ureas the present study evaluated mitochondrial targeting by 1 g analogues containing alkyl chains between 10-17 carbons. Using the dye JC-1, the C12-C17 analogues efficiently disrupted the mitochondrial membrane potential (IC50 s 3.5±1.2 to 7.6±1.1 µM) and impaired ATP production; shorter analogues were less active. 7-Aminoactinomycin D/annexin V staining and flow cytometry showed that these agents activated the killing mechanisms of necrosis and apoptosis to varying extents (7-aminoactinomycin D/annexin V staining ratios 4.3-6.0). Indeed, 1 g and its C17 analogue preferentially activated necrosis and apoptosis, respectively (ratios 2.1 and 16). Taken together, alkyl chain length is a determinant of mitochondrial targeting by aryl-ureas and can be varied to develop analogues that activate apoptosis or necrosis in a regulated fashion.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Carbono/farmacologia , Ácidos Graxos/farmacologia , Ureia/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carbono/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ácidos Graxos/síntese química , Ácidos Graxos/química , Humanos , Cinética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Ureia/análogos & derivados , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA