Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(51): e2308417120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38091293

RESUMO

Proteasome inhibitors are widely used anticancer drugs. The three clinically approved agents are modified small peptides that preferentially target one of the proteasome's three active sites (ß5) at physiologic concentrations. In addition to these drugs, there is also an endogenous proteasome inhibitor, PI31/Fub1, that enters the proteasome's interior to simultaneously yet specifically inhibit all three active sites. Here, we have used PI31's evolutionarily optimized inhibitory mechanisms to develop a suite of potent and specific ß2 inhibitors. The lead compound strongly inhibited growth of multiple myeloma cells as a standalone agent, indicating the compound's cell permeability and establishing ß2 as a potential therapeutic target in multiple myeloma. The lead compound also showed strong synergy with the existing ß5 inhibitor bortezomib; such combination therapies might help with existing challenges of resistance and severe side effects. These results represent an effective method for rational structure-guided development of proteasome inhibitors.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Antineoplásicos/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/química , Bortezomib/farmacologia , Bortezomib/uso terapêutico
2.
bioRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693604

RESUMO

PP2A serine/threonine protein phosphatases are heterotrimeric complexes that have a wide range of essential physiologic functions. The B55α form of PP2A has critical roles in cell cycle regulation, mitotic exit, and the DNA damage response1-6. Its activity is modulated by additional regulatory proteins, such as ARPP197, FAM122A8, and IER59. However, the precise mechanisms underlying the modulation of PP2A activity by these proteins remain elusive. Here, we show that IER5 inhibits pTau dephosphorylation by PP2A/B55α in biochemical assays and report a cryoelectron microscopy structure of the PP2A/B55α-IER5 complex, which reveals that IER5 occludes a surface on B55α used for substrate recruitment10-12. Mutation of interface residues on IER5 interferes with recovery of B55α in co-immunoprecipitation assays and suppresses events in squamous carcinoma cells, such as KRT1 expression, that depend on inhibition of PP2A/B55α by IER59. These studies define the molecular basis for PP2A inhibition by IER5 and suggest a roadmap for selective pharmacologic modulation of PP2A/B55α complexes.

3.
Nat Commun ; 14(1): 4580, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516774

RESUMO

RAF-family kinases are activated by recruitment to the plasma membrane by GTP-bound RAS, whereupon they initiate signaling through the MAP kinase cascade. Prior structural studies of KRAS with RAF have focused on the isolated RAS-binding and cysteine-rich domains of RAF (RBD and CRD, respectively), which interact directly with RAS. Here we describe cryo-EM structures of a KRAS bound to intact BRAF in an autoinhibited state with MEK1 and a 14-3-3 dimer. Analysis of this KRAS/BRAF/MEK1/14-3-3 complex reveals KRAS bound to the RAS-binding domain of BRAF, captured in two orientations. Core autoinhibitory interactions in the complex are unperturbed by binding of KRAS and in vitro activation studies confirm that KRAS binding is insufficient to activate BRAF, absent membrane recruitment. These structures illustrate the separability of binding and activation of BRAF by RAS and suggest stabilization of this pre-activation intermediate as an alternative therapeutic strategy to blocking binding of KRAS.


Assuntos
Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas p21(ras) , Microscopia Crioeletrônica , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Membrana Celular , Sistema de Sinalização das MAP Quinases
4.
Cell ; 186(5): 987-998.e15, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36764290

RESUMO

RADAR is a two-protein bacterial defense system that was reported to defend against phage by "editing" messenger RNA. Here, we determine cryo-EM structures of the RADAR defense complex, revealing RdrA as a heptameric, two-layered AAA+ ATPase and RdrB as a dodecameric, hollow complex with twelve surface-exposed deaminase active sites. RdrA and RdrB join to form a giant assembly up to 10 MDa, with RdrA docked as a funnel over the RdrB active site. Surprisingly, our structures reveal an RdrB active site that targets mononucleotides. We show that RdrB catalyzes ATP-to-ITP conversion in vitro and induces the massive accumulation of inosine mononucleotides during phage infection in vivo, limiting phage replication. Our results define ATP mononucleotide deamination as a determinant of RADAR immunity and reveal supramolecular assembly of a nucleotide-modifying machine as a mechanism of anti-phage defense.


Assuntos
Bacteriófagos , Bacteriófagos/metabolismo , Microscopia Crioeletrônica/métodos , ATPases Associadas a Diversas Atividades Celulares , Trifosfato de Adenosina , Adenosina Desaminase/metabolismo
5.
Front Mol Biosci ; 9: 960940, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188224

RESUMO

The Harvard Cryo-Electron Microscopy Center for Structural Biology, which was formed as a consortium between Harvard Medical School, Boston Children's Hospital, Dana-Farber Cancer Institute, and Massachusetts General Hospital, serves both academic and commercial users in the greater Harvard community. The facility strives to optimize research productivity while training users to become expert electron microscopists. These two tasks may be at odds and require careful balance to keep research projects moving forward while still allowing trainees to develop independence and expertise. This article presents the model developed at Harvard Medical School for running a research-oriented cryo-EM facility. Being a research-oriented facility begins with training in cryo-sample preparation on a trainee's own sample, ideally producing grids that can be screened and optimized on the Talos Arctica via multiple established pipelines. The first option, staff assisted screening, requires no user experience and a staff member provides instant feedback about the suitability of the sample for cryo-EM investigation and discusses potential strategies for sample optimization. Another option, rapid access, allows users short sessions to screen samples and introductory training for basic microscope operation. Once a sample reaches the stage where data collection is warranted, new users are trained on setting up data collection for themselves on either the Talos Arctica or Titan Krios microscope until independence is established. By providing incremental training and screening pipelines, the bottleneck of sample preparation can be overcome in parallel with developing skills as an electron microscopist. This approach allows for the development of expertise without hindering breakthroughs in key research areas.

6.
Nature ; 575(7783): 545-550, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31581174

RESUMO

RAF family kinases are RAS-activated switches that initiate signalling through the MAP kinase cascade to control cellular proliferation, differentiation and survival1-3. RAF activity is tightly regulated and inappropriate activation is a frequent cause of cancer4-6; however, the structural basis for RAF regulation is poorly understood at present. Here we use cryo-electron microscopy to determine autoinhibited and active-state structures of full-length BRAF in complexes with MEK1 and a 14-3-3 dimer. The reconstruction reveals an inactive BRAF-MEK1 complex restrained in a cradle formed by the 14-3-3 dimer, which binds the phosphorylated S365 and S729 sites that flank the BRAF kinase domain. The BRAF cysteine-rich domain occupies a central position that stabilizes this assembly, but the adjacent RAS-binding domain is poorly ordered and peripheral. The 14-3-3 cradle maintains autoinhibition by sequestering the membrane-binding cysteine-rich domain and blocking dimerization of the BRAF kinase domain. In the active state, these inhibitory interactions are released and a single 14-3-3 dimer rearranges to bridge the C-terminal pS729 binding sites of two BRAFs, which drives the formation of an active, back-to-back BRAF dimer. Our structural snapshots provide a foundation for understanding normal RAF regulation and its mutational disruption in cancer and developmental syndromes.


Assuntos
Proteínas 14-3-3/antagonistas & inibidores , Proteínas 14-3-3/química , Microscopia Crioeletrônica , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/química , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Sítios de Ligação , Transformação Celular Neoplásica/genética , Humanos , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , Modelos Moleculares , Mutação , Fosforilação , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
7.
Structure ; 23(3): 461-471, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25661654

RESUMO

Vacuolar H(+)-ATPases are multisubunit complexes that operate with rotary mechanics and are essential for membrane proton transport throughout eukaryotes. Here we report a ∼ 1 nm resolution reconstruction of a V-ATPase in a different conformational state from that previously reported for a lower-resolution yeast model. The stator network of the V-ATPase (and by implication that of other rotary ATPases) does not change conformation in different catalytic states, and hence must be relatively rigid. We also demonstrate that a conserved bearing in the catalytic domain is electrostatic, contributing to the extraordinarily high efficiency of rotary ATPases. Analysis of the rotor axle/membrane pump interface suggests how rotary ATPases accommodate different c ring stoichiometries while maintaining high efficiency. The model provides evidence for a half channel in the proton pump, supporting theoretical models of ion translocation. Our refined model therefore provides new insights into the structure and mechanics of the V-ATPases.


Assuntos
Proteínas de Insetos/química , Manduca/enzimologia , ATPases Vacuolares Próton-Translocadoras/química , Sequência de Aminoácidos , Animais , Domínio Catalítico , Sequência Conservada , Microscopia Crioeletrônica , Análise de Fourier , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
8.
J Biol Chem ; 289(23): 16399-408, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24795045

RESUMO

The vacuolar ATPase (V-ATPase) is a 1MDa transmembrane proton pump that operates via a rotary mechanism fuelled by ATP. Essential for eukaryotic cell homeostasis, it plays central roles in bone remodeling and tumor invasiveness, making it a key therapeutic target. Its importance in arthropod physiology also makes it a promising pesticide target. The major challenge in designing lead compounds against the V-ATPase is its ubiquitous nature, such that any therapeutic must be capable of targeting particular isoforms. Here, we have characterized the binding site on the V-ATPase of pea albumin 1b (PA1b), a small cystine knot protein that shows exquisitely selective inhibition of insect V-ATPases. Electron microscopy shows that PA1b binding occurs across a range of equivalent sites on the c ring of the membrane domain. In the presence of Mg·ATP, PA1b localizes to a single site, distant from subunit a, which is predicted to be the interface for other inhibitors. Photoaffinity labeling studies show radiolabeling of subunits c and e. In addition, weevil resistance to PA1b is correlated with bafilomycin resistance, caused by mutation of subunit c. The data indicate a binding site to which both subunits c and e contribute and inhibition that involves locking the c ring rotor to a static subunit e and not subunit a. This has implications for understanding the V-ATPase mechanism and that of inhibitors with therapeutic or pesticidal potential. It also provides the first evidence for the position of subunit e within the complex.


Assuntos
Albuminas/metabolismo , Inseticidas/metabolismo , Pisum sativum/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Albuminas/antagonistas & inibidores , Sequência de Bases , Benzofenonas/metabolismo , Sítios de Ligação , Biotina/metabolismo , Primers do DNA , Inseticidas/química , Microscopia Eletrônica , Marcadores de Fotoafinidade , Ligação Proteica , ATPases Vacuolares Próton-Translocadoras/química
9.
PLoS One ; 8(12): e82207, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312643

RESUMO

The V-ATPase is a membrane-bound protein complex which pumps protons across the membrane to generate a large proton motive force through the coupling of an ATP-driven 3-stroke rotary motor (V1) to a multistroke proton pump (Vo). This is done with near 100% efficiency, which is achieved in part by flexibility within the central rotor axle and stator connections, allowing the system to flex to minimise the free energy loss of conformational changes during catalysis. We have used electron microscopy to reveal distinctive bending along the V-ATPase complex, leading to angular displacement of the V1 domain relative to the Vo domain to a maximum of ~30°. This has been complemented by elastic network normal mode analysis that shows both flexing and twisting with the compliance being located in the rotor axle, stator filaments, or both. This study provides direct evidence of flexibility within the V-ATPase and by implication in related rotary ATPases, a feature predicted to be important for regulation and their high energetic efficiencies.


Assuntos
ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Microscopia Crioeletrônica , Manduca/enzimologia , Saccharomyces/enzimologia , ATPases Vacuolares Próton-Translocadoras/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA