Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 35(2): 108974, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852838

RESUMO

Clinical definitions of asthma fail to capture the heterogeneity of immune dysfunction in severe, treatment-refractory disease. Applying mass cytometry and machine learning to bronchoalveolar lavage (BAL) cells, we find that corticosteroid-resistant asthma patients cluster largely into two groups: one enriched in interleukin (IL)-4+ innate immune cells and another dominated by interferon (IFN)-γ+ T cells, including tissue-resident memory cells. In contrast, BAL cells of a healthier population are enriched in IL-10+ macrophages. To better understand cellular mediators of severe asthma, we developed the Immune Cell Linkage through Exploratory Matrices (ICLite) algorithm to perform deconvolution of bulk RNA sequencing of mixed-cell populations. Signatures of mitosis and IL-7 signaling in CD206-FcεRI+CD127+IL-4+ innate cells in one patient group, contrasting with adaptive immune response in T cells in the other, are preserved across technologies. Transcriptional signatures uncovered by ICLite identify T-cell-high and T-cell-poor severe asthma patients in an independent cohort, suggesting broad applicability of our findings.


Assuntos
Asma/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Aprendizado de Máquina , Macrófagos/imunologia , Imunidade Adaptativa , Corticosteroides/uso terapêutico , Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Asma/genética , Asma/patologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Memória Imunológica , Interferon gama/genética , Interferon gama/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-7/genética , Interleucina-7/imunologia , Macrófagos/patologia , Proteômica/métodos , Receptores de IgE/genética , Receptores de IgE/imunologia , Índice de Gravidade de Doença , Transdução de Sinais
2.
Cell Rep ; 34(6): 108736, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33567272

RESUMO

Bacterial pneumonia is a global healthcare burden, and unwarranted inflammation is suggested as an important cause of mortality. Optimum levels of the anti-inflammatory cytokine IL-10 are essential to reduce inflammation and improve survival in pneumonia. Elevated levels of the mitochondrial-DAMP cardiolipin (CL), reported in tracheal aspirates of pneumonia patients, have been shown to block IL-10 production from lung MDSCs. Although CL-mediated K107 SUMOylation of PPARγ has been suggested to impair this IL-10 production, the mechanism remains elusive. We identify PIAS2 to be the specific E3-SUMOligase responsible for this SUMOylation. Moreover, we identify a concomitant CL-mediated PPARγ S112 phosphorylation, mediated by JNK-MAPK, to be essential for PIAS2 recruitment. Furthermore, using a clinically tested peptide inhibitor targeting JNK-MAPK, we blocked these post-translational modifications (PTMs) of PPARγ and rescued IL-10 expression, improving survival in murine pneumonia models. Thus, we explore the mechanism of mito-DAMP-mediated impaired lung inflammation resolution and propose a therapeutic strategy targeting PPARγ PTMs.


Assuntos
Cardiolipinas/imunologia , Interleucina-10/imunologia , Infecções por Klebsiella/imunologia , Klebsiella pneumoniae/imunologia , Macrófagos/imunologia , PPAR gama/imunologia , Pneumonia Bacteriana/imunologia , Animais , Infecções por Klebsiella/patologia , Macrófagos/patologia , Masculino , Camundongos , Fosforilação/imunologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Células RAW 264.7
3.
Blood Adv ; 3(3): 432-445, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30733303

RESUMO

Thrombocytopenia is associated with worse outcomes in patients with acute respiratory distress syndrome, which is most commonly caused by infection and marked by alveolar-capillary barrier disruption. However, the mechanisms by which platelets protect the lung alveolar-capillary barrier during infectious injury remain unclear. We found that natively thrombocytopenic Mpl -/- mice deficient in the thrombopoietin receptor sustain severe lung injury marked by alveolar barrier disruption and hemorrhagic pneumonia with early mortality following acute intrapulmonary Pseudomonas aeruginosa (PA) infection; barrier disruption was attenuated by platelet reconstitution. Although PA infection was associated with a brisk neutrophil influx, depletion of airspace neutrophils failed to substantially mitigate PA-triggered alveolar barrier disruption in Mpl -/- mice. Rather, PA cell-free supernatant was sufficient to induce lung epithelial cell apoptosis in vitro and in vivo and alveolar barrier disruption in both platelet-depleted mice and Mpl -/- mice in vivo. Cell-free supernatant from PA with genetic deletion of the type 2 secretion system, but not the type 3 secretion system, mitigated lung epithelial cell death in vitro and lung injury in Mpl -/- mice. Moreover, platelet releasates reduced poly (ADP ribose) polymerase cleavage and lung injury in Mpl -/- mice, and boiling of platelet releasates, but not apyrase treatment, abrogated PA supernatant-induced lung epithelial cell cytotoxicity in vitro. These findings indicate that while neutrophil airspace influx does not potentiate infectious lung injury in the thrombocytopenic host, platelets and their factors protect against severe pulmonary complications from pathogen-secreted virulence factors that promote host cell death even in the absence of overt infection.


Assuntos
Plaquetas/metabolismo , Lesão Pulmonar/etiologia , Trombocitopenia/complicações , Animais , Apoptose , Plaquetas/citologia , Morte Celular , Células Epiteliais , Lesão Pulmonar/sangue , Camundongos
4.
JCI Insight ; 3(3)2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29415890

RESUMO

Acute lung injury is characterized by excessive extracellular matrix proteolysis and neutrophilic inflammation. A major risk factor for lung injury is bacterial pneumonia. However, host factors that protect against pathogen-induced and host-sustained proteolytic injury following infection are poorly understood. Pseudomonas aeruginosa (PA) is a major cause of nosocomial pneumonia and secretes proteases to amplify tissue injury. We show that thrombospondin-1 (TSP-1), a matricellular glycoprotein released during inflammation, dose-dependently inhibits PA metalloendoprotease LasB, a virulence factor. TSP-1-deficient (Thbs1-/-) mice show reduced survival, impaired host defense, and increased lung permeability with exaggerated neutrophil activation following acute intrapulmonary PA infection. Administration of TSP-1 from platelets corrects the impaired host defense and aberrant injury in Thbs1-/- mice. Although TSP-1 is cleaved into 2 fragments by PA, TSP-1 substantially inhibits Pseudomonas elastolytic activity. Administration of LasB inhibitor, genetic disabling of the PA type II secretion system, or functional deletion of LasB improves host defense and neutrophilic inflammation in mice. Moreover, TSP-1 provides an additional line of defense by directly subduing host-derived proteolysis, with dose-dependent inhibition of neutrophil elastase from airway neutrophils of mechanically ventilated critically ill patients. Thus, a host matricellular protein provides dual levels of protection against pathogen-initiated and host-sustained proteolytic injury following microbial trigger.


Assuntos
Matriz Extracelular/metabolismo , Lesão Pulmonar/patologia , Pneumonia Bacteriana/patologia , Infecções por Pseudomonas/patologia , Trombospondina 1/metabolismo , Animais , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Elastase de Leucócito/metabolismo , Pulmão/citologia , Pulmão/imunologia , Pulmão/patologia , Lesão Pulmonar/imunologia , Lesão Pulmonar/microbiologia , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Proteólise , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/patogenicidade , Respiração Artificial/efeitos adversos , Trombospondina 1/genética , Fatores de Virulência/antagonistas & inibidores , Fatores de Virulência/metabolismo
5.
Nat Commun ; 8: 13944, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28074841

RESUMO

Bacterial pneumonia is a significant healthcare burden worldwide. Failure to resolve inflammation after infection precipitates lung injury and an increase in morbidity and mortality. Gram-negative bacteria are common in pneumonia and increased levels of the mito-damage-associated molecular pattern (DAMP) cardiolipin can be detected in the lungs. Here we show that mice infected with Klebsiella pneumoniae develop lung injury with accumulation of cardiolipin. Cardiolipin inhibits resolution of inflammation by suppressing production of anti-inflammatory IL-10 by lung CD11b+Ly6GintLy6CloF4/80+ cells. Cardiolipin induces PPARγ SUMOylation, which causes recruitment of a repressive NCOR/HDAC3 complex to the IL-10 promoter, but not the TNF promoter, thereby tipping the balance towards inflammation rather than resolution. Inhibition of HDAC activity by sodium butyrate enhances recruitment of acetylated histone 3 to the IL-10 promoter and increases the concentration of IL-10 in the lungs. These findings identify a mechanism of persistent inflammation during pneumonia and indicate the potential of HDAC inhibition as a therapy.


Assuntos
Cardiolipinas/fisiologia , Inflamação/metabolismo , Interleucina-10/biossíntese , Infecções por Klebsiella/fisiopatologia , Klebsiella pneumoniae/isolamento & purificação , Pneumonia Bacteriana/metabolismo , Animais , Cardiolipinas/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Interleucina-10/genética , Interleucina-10/metabolismo , Infecções por Klebsiella/microbiologia , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Supressoras Mieloides/imunologia , Oxirredução , PPAR gama/agonistas , PPAR gama/metabolismo , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/patologia , Regiões Promotoras Genéticas , Células RAW 264.7 , Sumoilação , Fator de Necrose Tumoral alfa/genética
6.
J Infect Dis ; 214(12): 1865-1875, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27683817

RESUMO

Klebsiella pneumoniae remains an important cause of intrapulmonary infection and invasive disease worldwide. K. pneumoniae can evade serum killing and phagocytosis primarily through the expression of a polysaccharide capsule, but its pathogenicity is also influenced by host factors. We examined whether CD36, a scavenger receptor that recognizes pathogen and modified self ligands, is a host determinant of K. pneumoniae pathogenicity. Despite differences in serum sensitivity and virulence of 3 distinct K. pneumoniae (hypermucoviscous K1, research K2, and carbapenemase-producing ST258) strains, the absence of CD36 significantly increased host susceptibility to acute intrapulmonary infection by K. pneumoniae, regardless of strain. We demonstrate that CD36 enhances LPS responsiveness to K. pneumoniae to increase downstream cytokine production and macrophage phagocytosis that is independent of polysaccharide capsular antigen. Our study provides new insights into host determinants of K. pneumoniae pathogenicity and raises the possibility that functional mutations in CD36 may predispose individuals to K. pneumoniae syndromes.


Assuntos
Antígenos CD36/metabolismo , Interações Hospedeiro-Patógeno , Infecções por Klebsiella/imunologia , Klebsiella pneumoniae/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Fagocitose , Animais , Feminino , Macrófagos/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia Bacteriana/imunologia
7.
Sci Signal ; 8(395): ra95, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26396268

RESUMO

Among the distinct molecular signatures present in the mitochondrion is the tetra-acylated anionic phospholipid cardiolipin, a lipid also present in primordial, single-cell bacterial ancestors of mitochondria and multiple bacterial species today. Cardiolipin is normally localized to the inner mitochondrial membrane; however, when cardiolipin becomes externalized to the surface of dysregulated mitochondria, it promotes inflammasome activation and stimulates the elimination of damaged or nonfunctional mitochondria by mitophagy. Given the immunogenicity of mitochondrial and bacterial membranes that are released during sterile and pathogen-induced trauma, we hypothesized that cardiolipins might function as "eat me" signals for professional phagocytes. In experiments with macrophage cell lines and primary macrophages, we found that membranes with mitochondrial or bacterial cardiolipins on their surface were engulfed through phagocytosis, which depended on the scavenger receptor CD36. Distinct from this process, the copresentation of cardiolipin with the Toll-like receptor 4 (TLR4) agonist lipopolysaccharide dampened TLR4-stimulated production of cytokines. These data suggest that externalized, extracellular cardiolipins play a dual role in host-host and host-pathogen interactions by promoting phagocytosis and attenuating inflammatory immune responses.


Assuntos
Antígenos CD36/imunologia , Cardiolipinas/imunologia , Macrófagos/imunologia , Fagocitose , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia , Linhagem Celular Tumoral , Humanos
8.
J Immunol ; 195(2): 431-5, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26062999

RESUMO

The respiratory tract maintains immune homeostasis despite constant provocation by environmental Ags. Failure to induce tolerogenic responses to allergens incites allergic inflammation. Despite the understanding that APCs have a crucial role in maintaining immune tolerance, the underlying mechanisms are poorly understood. Using mice with a conditional deletion of peroxisome proliferator-activated receptor γ (PPARγ) in CD11c(+) cells, we show that PPARγ performs two critical functions in CD11c(+) cells to induce tolerance, thereby preserving immune homeostasis. First, PPARγ was crucial for the induction of retinaldehyde dehydrogenase (aldh1a2) selectively in CD103(+) dendritic cells, which we recently showed promotes Foxp3 expression in naive CD4(+) T cells. Second, in all CD11c(+) cells, PPARγ was required to suppress expression of the Th17-skewing cytokines IL-6 and IL-23p19. Also, lack of PPARγ in CD11c(+) cells induced p38 MAPK activity, which was recently linked to Th17 development. Thus, PPARγ favors immune tolerance by promoting regulatory T cell generation and blocking Th17 differentiation.


Assuntos
Hipersensibilidade/imunologia , Tolerância Imunológica , PPAR gama/imunologia , Sistema Respiratório/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/imunologia , Família Aldeído Desidrogenase 1 , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Antígeno CD11c/genética , Antígeno CD11c/imunologia , Diferenciação Celular , Células Dendríticas/imunologia , Células Dendríticas/patologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Regulação da Expressão Gênica , Homeostase , Hipersensibilidade/genética , Hipersensibilidade/patologia , Imunidade Inata , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/imunologia , Subunidade p19 da Interleucina-23/genética , Subunidade p19 da Interleucina-23/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Camundongos , Camundongos Knockout , PPAR gama/genética , Sistema Respiratório/patologia , Retinal Desidrogenase , Transdução de Sinais , Linfócitos T Reguladores/patologia , Células Th17/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
9.
J Immunol ; 192(12): 5471-5475, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24829419

RESUMO

We reported previously that c-kit ligation by membrane-bound stem cell factor (mSCF) boosts IL-6 production in dendritic cells (DCs) and a Th17-immune response. However, Th17 establishment also requires heterodimeric IL-23, but the mechanisms that regulate IL-23 gene expression in DCs are not fully understood. We show that IL-23p19 gene expression in lung DCs is dependent on mSCF, which is regulated by the metalloproteinase MMP-9. Th1-inducing conditions enhanced MMP-9 activity, causing cleavage of mSCF, whereas the opposite was true for Th17-promoting conditions. In MMP-9(-/-) mice, a Th1-inducing condition could maintain mSCF and enhance IL-23p19 in DCs, promoting IL-17-producing CD4(+) T cells in the lung. Conversely, mSCF cleavage from bone marrow DCs in vitro by rMMP-9 led to reduced IL-23p19 expression under Th17-inducing conditions, with dampening of intracellular AKT phosphorylation. Collectively, these results show that the c-kit/mSCF/MMP-9 axis regulates IL-23 gene expression in DCs to control IL-17 production in the lung.


Assuntos
Células Dendríticas/imunologia , Regulação da Expressão Gênica/imunologia , Interleucina-17/imunologia , Subunidade p19 da Interleucina-23/imunologia , Pulmão/imunologia , Metaloproteinase 9 da Matriz/imunologia , Fator de Células-Tronco/imunologia , Animais , Membrana Celular/genética , Membrana Celular/imunologia , Membrana Celular/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Regulação da Expressão Gênica/genética , Interleucina-17/genética , Interleucina-17/metabolismo , Subunidade p19 da Interleucina-23/biossíntese , Subunidade p19 da Interleucina-23/genética , Pulmão/citologia , Pulmão/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Fosforilação/genética , Fosforilação/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Células-Tronco/genética , Fator de Células-Tronco/metabolismo , Células Th1/citologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/citologia , Células Th17/imunologia , Células Th17/metabolismo
10.
Curr Opin Allergy Clin Immunol ; 14(1): 7-12, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24300419

RESUMO

PURPOSE OF REVIEW: Binding of the receptor tyrosine kinase, c-kit, to its ligand, stem cell factor (SCF), mediates numerous biological functions. Important roles for c-kit in hematopoiesis, melanogenesis, erythropoiesis, spermatogenesis, and carcinogenesis are well documented. Similarly, activation of mast cells and eosinophils by c-kit ligation has long been known to result in degranulation with concomitant release of pro-inflammatory mediators including cytokines. This review will highlight a recently discovered function of c-kit in regulating the adaptive immune responses with relevance to allergic diseases. RECENT FINDINGS: Recent studies in a number of laboratories including our own highlight the previously unappreciated functions for c-kit in immunological processes. Increased expression of c-kit and its ligand, SCF, on dendritic cells by Th2/Th17-inducing stimuli leads to c-kit activation and immune skewing toward these subsets and away from Th1 responses. Treatment of dendritic cells with inhibitors of c-kit activation such as imatinib mesylate (Gleevec) induces breach of T-cell tolerance, skewing of responses toward Th1, and activation of natural killer cells. SUMMARY: Taken together, these observations suggest that the c-kit/SCF axis may be a useful target for redirecting deleterious immune responses in various disease settings, including allergic diseases that are often associated with Th2 and Th17 responses.


Assuntos
Células Dendríticas/imunologia , Hipersensibilidade/metabolismo , Células Matadoras Naturais/imunologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fator de Células-Tronco/metabolismo , Células Th17/imunologia , Células Th2/imunologia , Imunidade Adaptativa , Animais , Benzamidas/farmacologia , Citocinas/imunologia , Humanos , Mesilato de Imatinib , Ativação Linfocitária/efeitos dos fármacos , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-kit/imunologia , Pirimidinas/farmacologia , Sistema Respiratório/imunologia , Transdução de Sinais , Equilíbrio Th1-Th2/efeitos dos fármacos
11.
Artigo em Inglês | MEDLINE | ID: mdl-24066282

RESUMO

Ligand-mediated activation of toll-like receptors (TLRs) not only induces inflammation but also immune suppression, which is an emerging area of investigation. Multiple negative feedback intracellular mechanisms have been described that are brought into play to prevent uncontrolled TLR activation. However, the identification of TLR-induced regulatory myeloid cells is a relatively recent development that has ramifications in pathogen-induced disease state as well as in cancer. Our efforts to understand how a high dose of lipopolysaccharide (LPS), a ligand of TLR4, suppresses allergic airway inflammation led to the identification of myeloid cells that are CD11b(+)Gri(int)(Ly6G(int))F4/80(+) and are phenotypically and morphologically similar to myeloid-derived suppressor cells (MDSCs) which are best studied in the context of cancer. MDSCs have been also detected during infection by various bacteria, parasites and viruses, which can engage different TLRs. These TLR-induced myeloid cells produce different types of mediators to influence immune response and inflammation that can be either beneficial or detrimental to the host. One beneficial function of TLR4/MyD88-triggered MDSCs in the lung is to efferocytose apoptotic neutrophils to help resolve inflammation elicited during bacterial pneumonia. A better understanding of the generation and function of these regulatory cells would be helpful to harness their potential or suppress their function for disease-specific immune regulation.


Assuntos
Bactérias/imunologia , Tolerância Imunológica , Imunidade , Parasitos/imunologia , Transdução de Sinais , Receptores Toll-Like/metabolismo , Vírus/imunologia , Animais , Humanos , Inflamação/imunologia , Inflamação/patologia
12.
J Allergy Clin Immunol ; 131(4): 1117-29, 1129.e1-5, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22795370

RESUMO

BACKGROUND: IL-17 is an important cytokine signature of the TH differentiation pathway TH17. This T-cell subset is crucial in mediating autoimmune disease or antimicrobial immunity in animal models, but its presence and role in human disease remain to be completely characterized. OBJECTIVE: We set out to determine the frequency of TH17 cells in patients with cystic fibrosis (CF), a disease in which there is recurrent infection with known pathogens. METHODS: Explanted lungs from patients undergoing transplantation or organ donors (CF samples=18; non-CF, nonbronchiectatic samples=10) were collected. Hilar nodes and parenchymal lung tissue were processed and examined for TH17 signature by using immunofluorescence and quantitative real-time PCR. T cells were isolated and stimulated with antigens from Pseudomonas aeruginosa and Aspergillus species. Cytokine profiles and staining with flow cytometry were used to assess the reactivity of these cells to antigen stimulation. RESULTS: We found a strong IL-17 phenotype in patients with CF compared with that seen in control subjects without CF. Within this tissue, we found pathogenic antigen-responsive CD4+IL-17+ cells. There were double-positive IL-17+IL-22+ cells [TH17(22)], and the IL-22+ population had a higher proportion of memory characteristics. Antigen-specific TH17 responses were stronger in the draining lymph nodes compared with those seen in matched parenchymal lungs. CONCLUSION: Inducible proliferation of TH17(22) with memory cell characteristics is seen in the lungs of patients with CF. The function of these individual subpopulations will require further study regarding their development. T cells are likely not the exclusive producers of IL-17 and IL-22, and this will require further characterization.


Assuntos
Fibrose Cística/patologia , Interleucina-17/imunologia , Interleucinas/imunologia , Pulmão/patologia , Linfonodos/patologia , Células Th17/patologia , Adulto , Idoso , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/farmacologia , Antígenos de Fungos/imunologia , Antígenos de Fungos/farmacologia , Aspergillus/química , Estudos de Casos e Controles , Proliferação de Células/efeitos dos fármacos , Fibrose Cística/genética , Fibrose Cística/imunologia , Feminino , Expressão Gênica , Humanos , Memória Imunológica , Imunofenotipagem , Interleucina-17/genética , Interleucinas/genética , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Ativação Linfocitária/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Pseudomonas aeruginosa/química , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Interleucina 22
13.
Thorax ; 67(12): 1061-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23015684

RESUMO

BACKGROUND: Eosinophilic inflammation is implicated in asthma. Eotaxin 1-3 regulate eosinophil trafficking into the airways along with other chemotactic factors. However, the epithelial and bronchoalveolar lavage (BAL) cell expression of these chemokines in relation to asthma severity and eosinophilic phenotypes has not been addressed. OBJECTIVE: To measure the expression of the three eotaxin isoforms in bronchoscopically obtained samples and compare them with clinically relevant parameters between normal subjects and patients with asthma. METHODS: Normal subjects and patients with asthma of varying severity recruited through the Severe Asthma Research Program underwent clinical assessment and bronchoscopy with airway brushing and BAL. Eotaxin 1-3 mRNA/protein were measured in epithelial and BAL cells and compared with asthma severity, control and eosinophilic inflammation. RESULTS: Eotaxin-2 and eotaxin-3 mRNA and eotaxin-2 protein were increased in airway epithelial brushings from patients with asthma and were highest in cases of severe asthma (p values 0.0155, 0.0033 and 0.0006, respectively), with eotaxin-2 protein increased with age at onset. BAL cells normally expressed high levels of eotaxin-2 mRNA/protein but BAL fluid levels of eotaxin-2 were lowest in severe asthma. Epithelial eotaxin-2 and eotaxin-3 mRNA/protein was associated with sputum eosinophilia, lower forced expiratory volume in 1 s and more asthma exacerbations. Airway epithelial cell eotaxin-2 protein differed by asthma severity only in those with late onset disease, and tended to be highest in those with late onset eosinophilic asthma. CONCLUSIONS: Epithelial eotaxin-2 and 3 are increased in asthma and severe asthma. Their expression may contribute to luminal migration of eosinophils, especially in later onset disease, asthma control and severity.


Assuntos
Asma/metabolismo , Quimiocina CCL24/metabolismo , Quimiocinas CC/metabolismo , Eosinofilia/metabolismo , Células Epiteliais/metabolismo , Corticosteroides/farmacologia , Adulto , Idade de Início , Lavagem Broncoalveolar , Broncoscopia , Quimiocina CCL11/metabolismo , Quimiocina CCL26 , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Estatísticas não Paramétricas
14.
Immunol Res ; 50(2-3): 153-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21717065

RESUMO

Myeloid-derived suppressor cells (MDSCs) have been investigated largely in the context of tumor progression. In contrast to the negative connotation of MDSCs in cancer immunity, our laboratory has recently reported on the development and role of pulmonary MDSC-like cells (CD11b(+)Gr1(int)F4/80(+)) in the regulation of allergic airway inflammation. These regulatory cells were expanded in a TLR4/MyD88-dependent manner and were both phenotypically and morphologically similar to those described in the tumor microenvironment. Although bacterial lipopolysaccharide (LPS) was initially described as an adjuvant in the development of allergic inflammation, subsequent studies showed that this is true only at relatively low doses of LPS. A high dose of LPS was shown to actually suppress eosinophilic airway inflammation. In our efforts to understand the mechanism underlying LPS-mediated suppression of allergic airway disease, we recently showed that LPS induces MDSC-like cells in the lung tissue in a dose-dependent manner, with increased accumulation of the cells at high doses of LPS. In contrast to lung dendritic cells (DCs), the MDSC-like cells did not traffic to the lung-draining lymph nodes, allowing them to act in a dominant fashion over DCs in the regulation of Th2 responses. The MDSC-like cells were found to blunt the ability of the lung DCs to upregulate GATA-3 or to promote STAT5 activation in primed Th2 cells, both transcription factors having critical roles in Th2 effector function. Thus, a complete understanding of the generation and regulation of the lung MDSCs would provide novel options for therapeutic interventions.


Assuntos
Inflamação/imunologia , Inflamação/patologia , Pulmão/imunologia , Pulmão/patologia , Células Mieloides/imunologia , Células Mieloides/patologia , Animais , Humanos , Hipersensibilidade/imunologia , Fatores Imunológicos/farmacologia , Terapia de Imunossupressão , Lipopolissacarídeos/farmacologia , Células Mieloides/efeitos dos fármacos , Linfócitos T/imunologia
15.
Proc Natl Acad Sci U S A ; 108(13): 5360-5, 2011 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-21402950

RESUMO

Aspergillus fumigatus is commonly associated with allergic bronchopulmonary aspergillosis in patients with severe asthma in which chronic airway neutrophilia predicts a poor outcome. We were able to recapitulate fungus-induced neutrophilic airway inflammation in a mouse model in our efforts to understand the underlying mechanisms. However, neutrophilia occurred in a mouse strain-selective fashion, providing us with an opportunity to perform a comparative study to elucidate the mechanisms involved. Here we show that TNF-α, largely produced by Ly6c(+)CD11b(+) dendritic cells (DCs), plays a central role in promoting IL-17A from CD4(+) T cells and collaborating with it to induce airway neutrophilia. Compared with C57BL/6 mice, BALB/c mice displayed significantly more TNF-α-producing DCs and macrophages in the lung. Lung TNF-α levels were drastically reduced in CD11c-DTR BALB/c mice depleted of CD11c+ cells, and TNF-α-producing Ly6c(+)CD11b(+) cells were abolished in Dectin-1(-/-) and MyD88(-/-) BALB/c mice. TNF-α deficiency itself blunted accumulation of inflammatory Ly6c(+)CD11b(+) DCs. Also, lack of TNF-α decreased IL-17A but promoted IL-5 levels, switching inflammation from a neutrophil to eosinophil bias resembling that in C57BL/6 mice. The TNF-α(low) DCs in C57BL/6 mice contained more NF-κB p50 homodimers, which are strong repressors of TNF-α transcription. Functionally, collaboration between TNF-α and IL-17A triggered significantly higher levels of the neutrophil chemoattractants keratinocyte cytokine and macrophage inflammatory protein 2 in BALB/c mice. Our study identifies TNF-α as a molecular switch that orchestrates a sequence of events in DCs and CD4 T cells that promote neutrophilic airway inflammation.


Assuntos
Células Dendríticas/imunologia , Eosinofilia/imunologia , Interleucina-17/imunologia , Interleucina-5/imunologia , Pulmão/imunologia , Neutrófilos/imunologia , Aspergilose Pulmonar/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Antígenos CD/imunologia , Linfócitos T CD4-Positivos/imunologia , Humanos , Pulmão/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Receptor 2 Toll-Like/imunologia
16.
J Immunol ; 186(5): 3206-14, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21278339

RESUMO

Increased numbers of macrophages are found in the lungs of smokers and those with chronic obstructive pulmonary disease. Experimental evidence shows the central role of macrophages in elaboration of inflammatory mediators such as TNF-α and the progression toward cigarette smoke-induced emphysema. We investigated the role of CX3CR1 in recruitment of mononuclear phagocytes, inflammatory cytokine responses, and tissue destruction in the lungs after cigarette smoke exposure. Using mice in which egfp is expressed at the locus of the cx3cr1 gene, we show that alveolar macrophages increased transmembrane ligand CX3CL1 expression and soluble CX3CL1 was detectable in the airspaces, but cx3cr1(GFP/GFP) and cx3cr1(GFP/+) mice failed to show recruitment of CX3CR1(+) cells into the airspaces with cigarette smoke. In contrast, cigarette smoke increased the accumulation of CX3CR1(+)CD11b(+) mononuclear phagocytes that were spatially confined to the lung interstitium and heterogenous in their expression of CD11c, MHC class II, and autofluorescent property. Although an intact CX3CL1-CX3CR1 pathway amplified the percentage of CX3CR1(+)CD11b(+) mononuclear phagocytes in the lungs, it was not essential for recruitment. Rather, functional CX3CR1 was required for a subset of tissue-bound mononuclear phagocytes to produce TNF-α and IL-6 in response to cigarette smoke, and the absence of functional CX3CR1 protected mice from developing tissue-destructive emphysema. Thus, CX3CR1(+) "tissue resident" mononuclear phagocytes initiate an innate immune response to cigarette smoke by producing TNF-α and IL-6 and are capable of promoting emphysema.


Assuntos
Interleucina-6/biossíntese , Sistema Fagocitário Mononuclear/imunologia , Sistema Fagocitário Mononuclear/patologia , Enfisema Pulmonar/imunologia , Enfisema Pulmonar/patologia , Receptores de Quimiocinas/biossíntese , Fumar/efeitos adversos , Fator de Necrose Tumoral alfa/biossíntese , Animais , Receptor 1 de Quimiocina CX3C , Adesão Celular/genética , Adesão Celular/imunologia , Linhagem Celular , Células Cultivadas , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sistema Fagocitário Mononuclear/metabolismo , Enfisema Pulmonar/metabolismo , Distribuição Aleatória , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/fisiologia , Fumar/imunologia , Fumar/patologia
17.
Int Immunopharmacol ; 11(7): 827-32, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21320637

RESUMO

In humans, the bacterial product lipopolysaccharide (LPS) has been associated with protection from allergic diseases such us asthma. However, in mouse models of allergic asthma, differential effects of LPS have been noted based on the dose. A low dose of LPS promotes Th2 responses and allergic disease but a high dose has been associated with suppression of allergic airway inflammation. Our recent work has described the ability of LPS to increase the frequency of CD11b+Gr1(int)F4/80+(abbreviated as Gr1(int) cells) cells in the lung tissue of mice in a dose-dependent fashion that is dependent on TLR4 and the TLR adaptor protein, MyD88. Both phenotypically and morphologically, the cells were found to have similarities with mycloid-derived suppressor cells. Adoptive transfer of LPS-induced Gr1(int) cells suppressed allergen-induced airway inflammation suggesting regulatory functions of the cells in allergic asthma. Although the Gr1(int) cells are detectable in the lung tissue of LPS-treated mice, they are barely detectable in the lung-draining lymph nodes (Lns) or in the airway lumen. This causes selective enrichment of these cells over dendritic cells (Dcs) in the tissue which upon LPS stimulation migrate to lung-draining LNs. The Gr1(int) cells were found to blunt the ability of the lung DCs to upregulate GATA-3 or to promote STAT5 activation in primed Th2 cells, both transcription factors having critical roles in TH2 effector function. Thus, a complete understanding of the generation and regulation of the Gr1(int) cells would provide new avenues to either promote or delete these cells for disease-specific immunoregulation.


Assuntos
Asma/imunologia , Terapia de Imunossupressão , Células Mieloides/metabolismo , Pneumonia/imunologia , Animais , Antígenos de Diferenciação/biossíntese , Antígenos Ly/biossíntese , Antígeno CD11b/biossíntese , Modelos Animais de Doenças , Humanos , Camundongos , Células Mieloides/imunologia , Células Mieloides/patologia , Pneumonia/patologia , Equilíbrio Th1-Th2
18.
PLoS One ; 6(1): e15943, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21246055

RESUMO

The ubiquitous fungus Aspergillus fumigatus is associated with chronic diseases such as invasive pulmonary aspergillosis in immunosuppressed patients and allergic bronchopulmonary aspergillosis (ABPA) in patients with cystic fibrosis or severe asthma. Because of constant exposure to this fungus, it is critical for the host to exercise an immediate and decisive immune response to clear fungal spores to ward off disease. In this study, we observed that rapidly after infection by A. fumigatus, alveolar macrophages predominantly express Arginase 1 (Arg1), a key marker of alternatively activated macrophages (AAMs). The macrophages were also found to express Ym1 and CD206 that are also expressed by AAMs but not NOS2, which is expressed by classically activated macrophages. The expression of Arg1 was reduced in the absence of the known signaling axis, IL-4Rα/STAT6, for AAM development. While both Dectin-1 and TLR expressed on the cell surface have been shown to sense A. fumigatus, fungus-induced Arg1 expression in CD11c(+) alveolar macrophages was not dependent on either Dectin-1 or the adaptor MyD88 that mediates intracellular signaling by most TLRs. Alveolar macrophages from WT mice efficiently phagocytosed fungal conidia, but those from mice deficient in Dectin-1 showed impaired fungal uptake. Depletion of macrophages with clodronate-filled liposomes increased fungal burden in infected mice. Collectively, our studies suggest that alveolar macrophages, which predominantly acquire an AAM phenotype following A. fumigatus infection, have a protective role in defense against this fungus.


Assuntos
Aspergillus fumigatus/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Animais , Arginase/imunologia , Células Cultivadas , Expressão Gênica , Imunidade , Lectinas Tipo C , Macrófagos Alveolares/metabolismo , Proteínas de Membrana/imunologia , Camundongos , Proteínas do Tecido Nervoso/imunologia , Infecções Oportunistas , Fagocitose/imunologia , Fenótipo
19.
Am J Respir Crit Care Med ; 182(2): 220-9, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20395557

RESUMO

RATIONALE: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and usually lethal fibrotic lung disease characterized by profound changes in epithelial cell phenotype and fibroblast proliferation. OBJECTIVES: To determine changes in expression and role of microRNAs in IPF. METHODS: RNA from 10 control and 10 IPF tissues was hybridized on Agilent microRNA microarrays and results were confirmed by quantitative real-time polymerase chain reaction and in situ hybridization. SMAD3 binding to the let-7d promoter was confirmed by chromatin immunoprecipitation, electrophoretic mobility shift assay, luciferase assays, and reduced expression of let-7d in response to transforming growth factor-beta. HMGA2, a let-7d target, was localized by immunohistochemistry. In mice, let-7d was inhibited by intratracheal administration of a let-7d antagomir and its effects were determined by immunohistochemistry, immunofluorescence, quantitative real-time polymerase chain reaction, and morphometry. MEASUREMENTS AND MAIN RESULTS: Eighteen microRNAs including let-7d were significantly decreased in IPF. Transforming growth factor-beta down-regulated let-7d expression, and SMAD3 binding to the let-7d promoter was demonstrated. Inhibition of let-7d caused increases in mesenchymal markers N-cadherin-2, vimentin, and alpha-smooth muscle actin (ACTA2) as well as HMGA2 in multiple epithelial cell lines. let-7d was significantly reduced in IPF lungs and the number of epithelial cells expressing let-7d correlated with pulmonary functions. HMGA2 was increased in alveolar epithelial cells of IPF lungs. let-7d inhibition in vivo caused alveolar septal thickening and increases in collagen, ACTA2, and S100A4 expression in SFTPC (pulmonary-associated surfactant protein C) expressing alveolar epithelial cells. CONCLUSIONS: Our results indicate a role for microRNAs in IPF. The down-regulation of let-7d in IPF and the profibrotic effects of this down-regulation in vitro and in vivo suggest a key regulatory role for this microRNA in preventing lung fibrosis. Clinical trial registered with www.clinicaltrials.gov (NCT 00258544).


Assuntos
Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , MicroRNAs/metabolismo , Actinas/metabolismo , Animais , Caderinas/metabolismo , Células Cultivadas , Regulação para Baixo , Células Epiteliais/metabolismo , Proteína HMGA2/metabolismo , Humanos , Fibrose Pulmonar Idiopática/patologia , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Alvéolos Pulmonares/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100 , Proteínas S100/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/fisiologia , Vimentina/metabolismo
20.
Ann N Y Acad Sci ; 1183: 104-22, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20146711

RESUMO

The binding of the receptor tyrosine kinase, c-kit, to its ligand, stem cell factor (SCF), mediates numerous biological functions. Important roles for c-kit in hematopoiesis, melanogenesis, erythropoiesis, spermatogenesis, and carcinogenesis are well documented. Similarly, activation of granulocytes, mast cells, and of eosinophils in particular, by c-kit ligation has long been known to result in degranulation with concomitant release of pro-inflammatory mediators, including cytokines. However, recent work from a number of laboratories, including our own, highlights previously unappreciated functions for c-kit in immunologic processes. These novel findings strongly suggest that signaling through the c-kit-SCF axis could have a significant impact on the pathogenesis of diseases associated with an immunologic component. In our own studies, c-kit upregulation on dendritic cells via T helper (Th)2- and Th17-inducing stimuli led to c-kit activation and immune skewing toward these T helper subsets and away from Th1 responses. Others have shown that dendritic cell treatment with inhibitors of c-kit activation, such as imatinib mesylate (Gleevec), favored breaking of T-cell tolerance, skewing of responses toward production of Th1 cytokines, and activation of natural killer cells. These data all indicate that deeper understanding of, and ability to control, the c-kit-SCF axis could lead to improved treatment modalities aimed at redirecting unwanted and/or deleterious immune responses in a wide variety of conditions.


Assuntos
Imunidade Adaptativa/fisiologia , Células Dendríticas/imunologia , Proteínas Proto-Oncogênicas c-kit/fisiologia , Imunidade Adaptativa/genética , Animais , Membrana Celular/metabolismo , Células Dendríticas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Humanos , Modelos Biológicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores Notch/metabolismo , Receptores Notch/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Fator de Células-Tronco/genética , Fator de Células-Tronco/metabolismo , Fator de Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA