Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioessays ; 45(8): e2300022, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37318311

RESUMO

With decades of research seeking to generalize sterile alpha motif (SAM) biology, many outstanding questions remain regarding this multi-tool protein module. Recent data from structural and molecular/cell biology has begun to reveal new SAM modes of action in cell signaling cascades and biomolecular condensation. SAM-dependent mechanisms underlie blood-related (hematologic) diseases, including myelodysplastic syndromes and leukemias, prompting our focus on hematopoiesis for this review. With the increasing coverage of SAM-dependent interactomes, a hypothesis emerges that SAM interaction partners and binding affinities work to fine tune cell signaling cascades in developmental and disease contexts, including hematopoiesis and hematologic disease. This review discusses what is known and remains unknown about the standard mechanisms and neoplastic properties of SAM domains and what the future might hold for developing SAM-targeted therapies.


Assuntos
Proteínas , Motivo Estéril alfa , Transdução de Sinais , Ligação Proteica
2.
J Biol Chem ; 295(20): 7113-7125, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32241909

RESUMO

Hundreds of sterile α-motif (SAM) domains have predicted structural similarities and are reported to bind proteins, lipids, or RNAs. However, the majority of these domains have not been analyzed functionally. Previously, we demonstrated that a SAM domain-containing protein, SAMD14, promotes SCF/proto-oncogene c-Kit (c-Kit) signaling, erythroid progenitor function, and erythrocyte regeneration. Deletion of a Samd14 enhancer (Samd14-Enh), occupied by GATA2 and SCL/TAL1 transcription factors, reduces SAMD14 expression in bone marrow and spleen and is lethal in a hemolytic anemia mouse model. To rigorously establish whether Samd14-Enh deletion reduces anemia-dependent c-Kit signaling by lowering SAMD14 levels, we developed a genetic rescue assay in murine Samd14-Enh-/- primary erythroid precursor cells. SAMD14 expression at endogenous levels rescued c-Kit signaling. The conserved SAM domain was required for SAMD14 to increase colony-forming activity, c-Kit signaling, and progenitor survival. To elucidate the molecular determinants of SAM domain function in SAMD14, we substituted its SAM domain with distinct SAM domains predicted to be structurally similar. The chimeras were less effective than SAMD14 itself in rescuing signaling, survival, and colony-forming activities. Thus, the SAMD14 SAM domain has attributes that are distinct from other SAM domains and underlie SAMD14 function as a regulator of cellular signaling and erythrocyte regeneration.


Assuntos
Anemia Hemolítica/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais , Motivos de Aminoácidos , Anemia Hemolítica/genética , Anemia Hemolítica/patologia , Animais , Camundongos , Camundongos Mutantes , Domínios Proteicos , Proteínas/genética , Proteínas Proto-Oncogênicas c-kit/genética
3.
Int J Biol Macromol ; 93(Pt A): 47-56, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27554932

RESUMO

Non Steroidal Anti-inflammatory Drugs (NSAIDs) form the most common class of anti-inflammatory and analgesic agents. They also show anticancer properties for which they exert their effects by interacting at the protein but not at the genomic level. This is because most NSAIDs are anions at physiological pH, which prohibit their approach to the polyanionic DNA backbone. Complexing NSAIDs with bioactive metal like copper obliterates this disadvantage. Here, copper complexes of two oxicam NSAIDs, Lornoxicam (Lx) and Isoxicam (Isx) have been chosen to study their interaction with calf thymus (ct) DNA and have been synthesized as per reported protocols. UV-vis absorption showed that DNA binding to Cu(II)-Lx complex alters the absorption spectra indicating changes in the electronic environment of the complex, whereas, for Cu(II)-Isx there was only small changes. Hence, UV-vis absorption was used to determine the binding constant, stoichiometry and thermodynamic parameters of Cu(II)-Lx. However, UV-melting studies and CD difference spectra showed that both Cu(II)-Lx and Cu(II)-Isx can interact with the DNA backbone albeit with different binding modes. The probable binding mode was determined by kinetics of EtBr displacement and viscosity measurements. Our results point to an intercalative mode of binding for Cu(II)-Lx and external groove binding for Cu(II)-Isx.


Assuntos
Anti-Inflamatórios não Esteroides/química , Cobre/química , DNA/química , Piroxicam/análogos & derivados , Sítios de Ligação , Dicroísmo Circular , Etídio/química , Substâncias Intercalantes/química , Cinética , Piroxicam/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA