Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
JCI Insight ; 9(3)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329129

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease associated with progressive death of midbrain dopamine (DAn) neurons in the substantia nigra (SN). Since it has been proposed that patients with PD exhibit an overall proinflammatory state, and since astrocytes are key mediators of the inflammation response in the brain, here we sought to address whether astrocyte-mediated inflammatory signaling could contribute to PD neuropathology. For this purpose, we generated astrocytes from induced pluripotent stem cells (iPSCs) representing patients with PD and healthy controls. Transcriptomic analyses identified a unique inflammatory gene expression signature in PD astrocytes compared with controls. In particular, the proinflammatory cytokine IL-6 was found to be highly expressed and released by PD astrocytes and was found to induce toxicity in DAn. Mechanistically, neuronal cell death was mediated by IL-6 receptor (IL-6R) expressed in human PD neurons, leading to downstream activation of STAT3. Blockage of IL-6R by the addition of the FDA-approved anti-IL-6R antibody, Tocilizumab, prevented PD neuronal death. SN neurons overexpressing IL-6R and reactive astrocytes expressing IL-6 were detected in postmortem brain tissue of patients at early stages of PD. Our findings highlight the potential role of astrocyte-mediated inflammatory signaling in neuronal loss in PD and pave the way for the design of future therapeutics.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Astrócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Interleucina-6/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios Dopaminérgicos/metabolismo
2.
Antioxidants (Basel) ; 12(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37507917

RESUMO

Anthracyclines are widely used in the treatment of many solid cancers, but their efficacy is limited by cardiotoxicity. As the number of pediatric cancer survivors continues to rise, there has been a concomitant increase in people living with anthracycline-induced cardiotoxicity. Accordingly, there is an ongoing need for new models to better understand the pathophysiological mechanisms of anthracycline-induced cardiac damage. Here we generated induced pluripotent stem cells (iPSCs) from two pediatric oncology patients with acute cardiotoxicity induced by anthracyclines and differentiated them to ventricular cardiomyocytes (hiPSC-CMs). Comparative analysis of these cells (CTX hiPSC-CMs) and control hiPSC-CMs revealed that the former were significantly more sensitive to cell injury and death from the anthracycline doxorubicin (DOX), as measured by viability analysis, cleaved caspase 3 expression, oxidative stress, genomic and mitochondrial damage and sarcomeric disorganization. The expression of several mRNAs involved in structural integrity and inflammatory response were also differentially affected by DOX. Functionally, optical mapping analysis revealed higher arrythmia complexity after DOX treatment in CTX iPSC-CMs. Finally, using a panel of previously identified microRNAs associated with cardioprotection, we identified lower levels of miR-22-3p, miR-30b-5p, miR-90b-3p and miR-4732-3p in CTX iPSC-CMs under basal conditions. Our study provides valuable phenotype information for cellular models of cardiotoxicity and highlights the significance of using patient-derived cardiomyocytes for studying the associated pathogenic mechanisms.

3.
Stem Cell Res Ther ; 13(1): 408, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962457

RESUMO

BACKGROUND: The increasing number of clinical trials for induced pluripotent stem cell (iPSC)-derived cell therapy products makes the production on clinical grade iPSC more and more relevant and necessary. Cord blood banks are an ideal source of young, HLA-typed and virus screened starting material to produce HLA-homozygous iPSC lines for wide immune-compatibility allogenic cell therapy approaches. The production of such clinical grade iPSC lines (haplolines) involves particular attention to all steps since donor informed consent, cell procurement and a GMP-compliant cell isolation process. METHODS: Homozygous cord blood units were identified and quality verified before recontacting donors for informed consent. CD34+ cells were purified from the mononuclear fraction isolated in a cell processor, by magnetic microbeads labelling and separation columns. RESULTS: We obtained a median recovery of 20.0% of the collected pre-freezing CD34+, with a final product median viability of 99.1% and median purity of 83.5% of the post-thawed purified CD34+ population. CONCLUSIONS: Here we describe our own experience, from unit selection and donor reconsenting, in generating a CD34+ cell product as a starting material to produce HLA-homozygous iPSC following a cost-effective and clinical grade-compliant procedure. These CD34+ cells are the basis for the Spanish bank of haplolines envisioned to serve as a source of cell products for clinical research and therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Antígenos CD34/genética , Antígenos CD34/metabolismo , Bancos de Sangue , Sangue Fetal , Homozigoto , Células-Tronco Pluripotentes Induzidas/metabolismo
4.
Cell Rep ; 38(7): 110385, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172160

RESUMO

Plexiform neurofibromas (pNFs) are developmental tumors that appear in neurofibromatosis type 1 individuals, constituting a major source of morbidity and potentially transforming into a highly metastatic sarcoma (MPNST). pNFs arise after NF1 inactivation in a cell of the neural crest (NC)-Schwann cell (SC) lineage. Here, we develop an iPSC-based NC-SC in vitro differentiation system and construct a lineage expression roadmap for the analysis of different 2D and 3D NF models. The best model consists of generating heterotypic spheroids (neurofibromaspheres) composed of iPSC-derived differentiating NF1(-/-) SCs and NF1(+/-) pNF-derived fibroblasts (Fbs). Neurofibromaspheres form by maintaining highly proliferative NF1(-/-) cells committed to the NC-SC axis due to SC-SC and SC-Fb interactions, resulting in SC linage cells at different maturation points. Upon engraftment on the mouse sciatic nerve, neurofibromaspheres consistently generate human NF-like tumors. Analysis of expression roadmap genes in human pNF single-cell RNA-seq data uncovers the presence of SC subpopulations at distinct differentiation states.


Assuntos
Células-Tronco Pluripotentes Induzidas/patologia , Neurofibroma Plexiforme/patologia , Células de Schwann/patologia , Adolescente , Adulto , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Criança , Feminino , Humanos , Masculino , Mesoderma/patologia , Camundongos , Pessoa de Meia-Idade , Modelos Biológicos , Crista Neural/patologia , Nervo Isquiático/patologia , Esferoides Celulares/patologia , Adulto Jovem
5.
Methods Mol Biol ; 2454: 61-81, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34845658

RESUMO

Stem cell therapy has an unparalleled potential to treat blood cancers, cardiovascular diseases and neurodegenerative conditions, among others. However, stem cell therapeutics must overcome multiple requirements before reaching clinical trials, including large animal safety and efficacy studies. In cardiovascular diseases swine models are the most widely adopted due to its great translational potential to humans. In this chapter, we will describe several protocols to induce iPSC dedifferentiation in swine fibroblasts, as well as conditioning treatments that may help in the reprogramming process.


Assuntos
Doenças Cardiovasculares , Células-Tronco Pluripotentes Induzidas , Animais , Reprogramação Celular , Fibroblastos , Vírus Sendai , Suínos
6.
Cell Oncol (Dordr) ; 44(6): 1273-1286, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34604945

RESUMO

PURPOSE: Cancer stem cells represent a cancer cell subpopulation that has been found to be associated with metastasis and chemoresistance. Therefore, it is vital to identify mechanisms regulating cancer stemness. Previously, we have shown that the atypical cyclin P (CCNP), also known as CNTD2, is upregulated in lung and colorectal cancers and is associated with a worse clinical prognosis. Given that other cyclins have been implicated in pluripotency regulation, we hypothesized that CCNP may also play a role in cancer stemness. METHODS: Cell line-derived spheroids, ex vivo intestinal organoid cultures and induced-pluripotent stem cells (iPSCs) were used to investigate the role of CCNP in stemness. The effects of CCNP on cancer cell stemness and the expression of pluripotency markers and ATP-binding cassette (ABC) transporters were evaluated using Western blotting and RT-qPCR assays. Cell viability was assessed using a MTT assay. The effects of CCNP on WNT targets were monitored by RNA-seq analysis. Data from publicly available web-based resources were also analyzed. RESULTS: We found that CCNP increases spheroid formation in breast, lung and colorectal cancers, and upregulates the expression of stemness (CD44, CD133) and pluripotency (SOX2, OCT4, NANOG) markers. In addition, we found that CCNP promotes resistance to anticancer drugs and induces the expression of multidrug resistance ABC transporters. Our RNA-seq data indicate that CCNP activates the WNT pathway, and that inhibition of this pathway abrogates the increase in spheroid formation promoted by CCNP. Finally, we found that CCNP knockout decreases OCT4 expression in iPSCs, further supporting the notion that CCNP is involved in stemness regulation. CONCLUSION: Our results reveal CCNP as a novel player in stemness and as a potential therapeutic target in cancer.


Assuntos
Ciclinas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Via de Sinalização Wnt , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Ciclinas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Células-Tronco Neoplásicas/patologia , Células-Tronco Pluripotentes/metabolismo , Via de Sinalização Wnt/genética
7.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638840

RESUMO

BACKGROUND: The aim of this study was to test the feasibility and safety of subretinal transplantation of human induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (RPE) cells into the healthy margins and within areas of degenerative retina in a swine model of geographic atrophy (GA). METHODS: Well-delimited selective outer retinal damage was induced by subretinal injection of NaIO3 into one eye in minipigs (n = 10). Thirty days later, a suspension of hiPSC-derived RPE cells expressing green fluorescent protein was injected into the subretinal space, into the healthy margins, and within areas of degenerative retina. In vivo follow-up was performed by multimodal imaging. Post-mortem retinas were analyzed by immunohistochemistry and histology. RESULTS: In vitro differentiated hiPSC-RPE cells showed a typical epithelial morphology, expressed RPE-related genes, and had phagocytic ability. Engrafted hiPSC-RPE cells were detected in 60% of the eyes, forming mature epithelium in healthy retina extending towards the border of the atrophy. Histological analysis revealed RPE interaction with host photoreceptors in the healthy retina. Engrafted cells in the atrophic zone were found in a patchy distribution but failed to form an epithelial-like layer. CONCLUSIONS: These results might support the use of hiPSC-RPE cells to treat atrophic GA by providing a housekeeping function to aid the overwhelmed remnant RPE, which might improve its survival and therefore slow down the progression of GA.


Assuntos
Atrofia Geográfica , Células-Tronco Pluripotentes Induzidas , Epitélio Pigmentado da Retina , Animais , Antígenos de Diferenciação/biossíntese , Modelos Animais de Doenças , Regulação da Expressão Gênica , Atrofia Geográfica/metabolismo , Atrofia Geográfica/patologia , Atrofia Geográfica/cirurgia , Xenoenxertos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/transplante , Suínos
8.
Hum Mutat ; 42(11): 1488-1502, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34420246

RESUMO

Germline pathogenic variants in BRCA1 confer a high risk of developing breast and ovarian cancer. The BRCA1 exon 11 (formally exon 10) is one of the largest exons and codes for the nuclear localization signals of the corresponding gene product. This exon can be partially or entirely skipped during pre-mRNA splicing, leading to three major in-frame isoforms that are detectable in most cell types and tissue, and in normal and cancer settings. However, it is unclear whether the splicing imbalance of this exon is associated with cancer risk. Here we identify a common genetic variant in intron 10, rs5820483 (NC_000017.11:g.43095106_43095108dup), which is associated with exon 11 isoform expression and alternative splicing, and with the risk of breast cancer, but not ovarian cancer, in BRCA1 pathogenic variant carriers. The identification of this genetic effect was confirmed by analogous observations in mouse cells and tissue in which a loxP sequence was inserted in the syntenic intronic region. The prediction that the rs5820483 minor allele variant would create a binding site for the splicing silencer hnRNP A1 was confirmed by pull-down assays. Our data suggest that perturbation of BRCA1 exon 11 splicing modifies the breast cancer risk conferred by pathogenic variants of this gene.


Assuntos
Neoplasias da Mama/genética , Éxons , Genes BRCA1 , Triagem de Portadores Genéticos , Predisposição Genética para Doença , Splicing de RNA , Feminino , Humanos , Íntrons
9.
Stem Cell Res Ther ; 12(1): 233, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849662

RESUMO

BACKGROUND: iPSC (induced pluripotent stem cells) banks of iPSC lines with homozygous HLA (human leukocyte antigen) haplotypes (haplobanks) are proposed as an affordable and off-the-shelf approach to allogeneic transplantation of iPSC derived cell therapies. Cord blood banks offer an extensive source of HLA-typed cells suitable for reprogramming to iPSC. Several initiatives worldwide have been undertaken to create national and international iPSC haplobanks that match a significant part of a population. METHODS: To create an iPSC haplobank that serves the Spanish population (IPS-PANIA), we have searched the Spanish Bone Marrow Donor Registry (REDMO) to identify the most frequently estimated haplotypes. From the top ten donors identified, we estimated the population coverage using the criteria of zero mismatches in HLA-A, HLA-B, and HLA-DRB1 with different stringencies: high resolution, low resolution, and beneficial mismatch. RESULTS: We have calculated that ten cord blood units from homozygous donors stored at the Spanish cord blood banks can provide HLA-A, HLA-B, and HLA-DRB1 matching for 28.23% of the population. CONCLUSION: We confirm the feasibility of using banked cord blood units to create an iPSC haplobank that will cover a significant percentage of the Spanish and international population for future advanced therapy replacement strategies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Bancos de Sangue , Antígenos HLA/genética , Haplótipos , Humanos , Estudos Prospectivos , Doadores de Tecidos
10.
Mol Ther Methods Clin Dev ; 20: 688-702, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33738324

RESUMO

Photoreceptor loss is the principal cause of blindness in retinal degenerative diseases (RDDs). Whereas some therapies exist for early stages of RDDs, no effective treatment is currently available for later stages, and once photoreceptors are lost, the only option to rescue vision is cell transplantation. With the use of the Royal College of Surgeons (RCS) rat model of retinal degeneration, we sought to determine whether combined transplantation of human-induced pluripotent stem cell (hiPSC)-derived retinal precursor cells (RPCs) and retinal pigment epithelial (RPE) cells was superior to RPE or RPC transplantation alone in preserving retinal from degeneration. hiPSC-derived RPCs and RPE cells expressing (GFP) were transplanted into the subretinal space of rats. In vivo monitoring showed that grafted cells survived 12 weeks in the subretinal space, and rats treated with RPE + RPC therapy exhibited better conservation of the outer nuclear layer (ONL) and visual response than RPE-treated or RPC-treated rats. Transplanted RPE cells integrated in the host RPE layer, whereas RPC mostly remained in the subretinal space, although a limited number of cells integrated in the ONL. In conclusion, the combined transplantation of hiPSC-derived RPE and RPCs is a potentially superior therapeutic approach to protect retina from degeneration in RDDs.

11.
J Clin Invest ; 129(10): 4539-4549, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31524631

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disease that lacks therapies to prevent progressive neurodegeneration. Impaired energy metabolism and reduced ATP levels are common features of PD. Previous studies revealed that terazosin (TZ) enhances the activity of phosphoglycerate kinase 1 (PGK1), thereby stimulating glycolysis and increasing cellular ATP levels. Therefore, we asked whether enhancement of PGK1 activity would change the course of PD. In toxin-induced and genetic PD models in mice, rats, flies, and induced pluripotent stem cells, TZ increased brain ATP levels and slowed or prevented neuron loss. The drug increased dopamine levels and partially restored motor function. Because TZ is prescribed clinically, we also interrogated 2 distinct human databases. We found slower disease progression, decreased PD-related complications, and a reduced frequency of PD diagnoses in individuals taking TZ and related drugs. These findings suggest that enhancing PGK1 activity and increasing glycolysis may slow neurodegeneration in PD.


Assuntos
Glicólise/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Prazosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Progressão da Doença , Dopamina/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/tratamento farmacológico , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Fosfoglicerato Quinase/metabolismo , Prazosina/farmacologia , Ratos
12.
Stem Cell Reports ; 13(3): 515-529, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31402335

RESUMO

In vertebrates, GATA2 is a master regulator of hematopoiesis and is expressed throughout embryo development and in adult life. Although the essential role of GATA2 in mouse hematopoiesis is well established, its involvement during early human hematopoietic development is not clear. By combining time-controlled overexpression of GATA2 with genetic knockout experiments, we found that GATA2, at the mesoderm specification stage, promotes the generation of hemogenic endothelial progenitors and their further differentiation to hematopoietic progenitor cells, and negatively regulates cardiac differentiation. Surprisingly, genome-wide transcriptional and chromatin immunoprecipitation analysis showed that GATA2 bound to regulatory regions, and repressed the expression of cardiac development-related genes. Moreover, genes important for hematopoietic differentiation were upregulated by GATA2 in a mostly indirect manner. Collectively, our data reveal a hitherto unrecognized role of GATA2 as a repressor of cardiac fates, and highlight the importance of coordinating the specification and repression of alternative cell fates.


Assuntos
Fator de Transcrição GATA2/metabolismo , Hematopoese , Mesoderma/metabolismo , Diferenciação Celular , Fator de Transcrição GATA2/genética , Regulação da Expressão Gênica , Hemangioblastos/citologia , Hemangioblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mesoderma/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ligação Proteica , Análise de Célula Única
13.
Nat Mater ; 18(9): 1015-1023, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31160803

RESUMO

Epithelial repair and regeneration are driven by collective cell migration and division. Both cellular functions involve tightly controlled mechanical events, but how physical forces regulate cell division in migrating epithelia is largely unknown. Here we show that cells dividing in the migrating zebrafish epicardium exert large cell-extracellular matrix (ECM) forces during cytokinesis. These forces point towards the division axis and are exerted through focal adhesions that connect the cytokinetic ring to the underlying ECM. When subjected to high loading rates, these cytokinetic focal adhesions prevent closure of the contractile ring, leading to multi-nucleation through cytokinetic failure. By combining a clutch model with experiments on substrates of different rigidity, ECM composition and ligand density, we show that failed cytokinesis is triggered by adhesion reinforcement downstream of increased myosin density. The mechanical interaction between the cytokinetic ring and the ECM thus provides a mechanism for the regulation of cell division and polyploidy that may have implications in regeneration and cancer.


Assuntos
Divisão Celular , Citocinese , Pericárdio/citologia , Poliploidia , Peixe-Zebra , Animais , Matriz Extracelular
15.
J Pharmacol Exp Ther ; 370(3): 761-771, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30728248

RESUMO

Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) are a promising cell source for cardiac repair after myocardial infarction (MI) because they offer several advantages such as potential to remuscularize infarcted tissue, integration in the host myocardium, and paracrine therapeutic effects. However, cell delivery issues have limited their potential application in clinical practice, showing poor survival and engraftment after transplantation. In this work, we hypothesized that the combination of hiPSC-CMs with microparticles (MPs) could enhance long-term cell survival and retention in the heart and consequently improve cardiac repair. CMs were obtained by differentiation of hiPSCs by small-molecule manipulation of the Wnt pathway and adhered to biomimetic poly(lactic-co-glycolic acid) MPs covered with collagen and poly(d-lysine). The potential of the system to support cell survival was analyzed in vitro, demonstrating a 1.70-fold and 1.99-fold increase in cell survival after 1 and 4 days, respectively. The efficacy of the system was tested in a mouse MI model. Interestingly, 2 months after administration, transplanted hiPSC-CMs could be detected in the peri-infarct area. These cells not only maintained the cardiac phenotype but also showed in vivo maturation and signs of electrical coupling. Importantly, cardiac function was significantly improved, which could be attributed to a paracrine effect of cells. These findings suggest that MPs represent an excellent platform for cell delivery in the field of cardiac repair, which could also be translated into an enhancement of the potential of cell-based therapies in other medical applications.


Assuntos
Plásticos Biodegradáveis/uso terapêutico , Cardiopatias/terapia , Células-Tronco Pluripotentes Induzidas/transplante , Miócitos Cardíacos/transplante , Nanopartículas/uso terapêutico , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Cardiopatias/patologia , Testes de Função Cardíaca , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Infarto do Miocárdio/terapia , Remodelação Ventricular
16.
Stem Cell Reports ; 12(2): 411-426, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30713041

RESUMO

Neurofibromatosis type 1 (NF1) is a tumor predisposition genetic disease caused by mutations in the NF1 tumor suppressor gene. Plexiform neurofibromas (PNFs) are benign Schwann cell (SC) tumors of the peripheral nerve sheath that develop through NF1 inactivation and can progress toward a malignant soft tissue sarcoma. There is a lack of non-perishable model systems to investigate PNF development. We reprogrammed PNF-derived NF1(-/-) cells, descendants from the tumor originating cell. These NF1(-/-)-induced pluripotent stem cells (iPSCs) captured the genomic status of PNFs and were able to differentiate toward neural crest stem cells and further to SCs. iPSC-derived NF1(-/-) SCs exhibited a continuous high proliferation rate, poor myelination ability, and a tendency to form 3D spheres that expressed the same markers as their PNF-derived primary SC counterparts. They represent a valuable model to study and treat PNFs. PNF-derived iPSC lines were banked for making them available.


Assuntos
Carcinogênese/genética , Reprogramação Celular/genética , Predisposição Genética para Doença/genética , Neurofibroma Plexiforme/genética , Neurofibromatose 1/genética , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Proliferação de Células/genética , Criança , Feminino , Genes Supressores de Tumor/fisiologia , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Crista Neural/fisiologia , Neurofibroma Plexiforme/sangue , Neurofibromatose 1/sangue , Células de Schwann/fisiologia , Adulto Jovem
17.
Stem Cell Reports ; 11(6): 1391-1406, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30416049

RESUMO

We generated patient-specific disease-free induced pluripotent stem cells (iPSCs) from peripheral blood CD34+ cells and differentiated them into functional endothelial cells (ECs) secreting factor VIII (FVIII) for gene and cell therapy approaches to cure hemophilia A (HA), an X-linked bleeding disorder caused by F8 mutations. iPSCs were transduced with a lentiviral vector carrying FVIII transgene driven by an endothelial-specific promoter (VEC) and differentiated into bona fide ECs using an optimized protocol. FVIII-expressing ECs were intraportally transplanted in monocrotaline-conditioned non-obese diabetic (NOD) severe combined immune-deficient (scid)-IL2rγ null HA mice generating a chimeric liver with functional human ECs. Transplanted cells engrafted and proliferated in the liver along sinusoids, in the long term showed stable therapeutic FVIII activity (6%). These results demonstrate that the hemophilic phenotype can be rescued by transplantation of ECs derived from HA FVIII-corrected iPSCs, confirming the feasibility of cell-reprogramming strategy in patient-derived cells as an approach for HA gene and cell therapy.


Assuntos
Células Endoteliais/citologia , Hemofilia A/terapia , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Antígenos CD34/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Modelos Animais de Doenças , Células Endoteliais/transplante , Fator VIII/metabolismo , Sangue Fetal/citologia , Fibroblastos/citologia , Hemofilia A/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Injeções Intraperitoneais , Fígado/citologia , Camundongos , Microesferas , Fenótipo , Veia Porta/metabolismo , Doadores de Tecidos
18.
Mol Neurobiol ; 55(9): 7533-7552, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29429047

RESUMO

Parkinson's disease is associated with intracellular α-synuclein accumulation and ventral midbrain dopaminergic neuronal death in the Substantia Nigra of brain patients. The Rho GTPase pathway, mainly linking surface receptors to the organization of the actin and microtubule cytoskeletons, has been suggested to participate to Parkinson's disease pathogenesis. Nevertheless, its exact contribution remains obscure. To unveil the participation of the Rho GTPase family to the molecular pathogenesis of Parkinson's disease, we first used C elegans to demonstrate the role of the small GTPase RAC1 (ced-10 in the worm) in maintaining dopaminergic function and survival in the presence of alpha-synuclein. In addition, ced-10 mutant worms determined an increase of alpha-synuclein inclusions in comparison to control worms as well as an increase in autophagic vesicles. We then used a human neuroblastoma cells (M17) stably over-expressing alpha-synuclein and found that RAC1 function decreased the amount of amyloidogenic alpha-synuclein. Further, by using dopaminergic neurons derived from patients of familial LRRK2-Parkinson's disease we report that human RAC1 activity is essential in the regulation of dopaminergic cell death, alpha-synuclein accumulation, participates in neurite arborization and modulates autophagy. Thus, we determined for the first time that RAC1/ced-10 participates in Parkinson's disease associated pathogenesis and established RAC1/ced-10 as a new candidate for further investigation of Parkinson's disease associated mechanisms, mainly focused on dopaminergic function and survival against α-synuclein-induced toxicity.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/fisiologia , Neurônios Dopaminérgicos/enzimologia , alfa-Sinucleína/toxicidade , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Amiloide/metabolismo , Animais , Autofagia/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Biomarcadores/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dopamina/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Mesencéfalo/patologia , Mutação/genética , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neuroproteção/efeitos dos fármacos , Doença de Parkinson/patologia
19.
Mol Neurobiol ; 55(6): 4763-4776, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28717970

RESUMO

Mesenchymal stromal cells (MSCs) have been shown to have useful properties for cell therapy and have been proposed for treatment of neurodegenerative diseases, including Parkinson's disease. However, the mechanisms involved in recovering dopaminergic neurons are not clear. The present study aims to evaluate the pathways and molecules involved in the neuroprotective effect of MSCs. We analyzed the viability of dopaminergic cells from different sources in response to conditioned medium derived from bone marrow MSC (MSC-CM). MSC-CM increased the viability of dopaminergic cells of rat and human origins, having both neuroprotective and neurorescue activities against effects of dopaminergic neurotoxin 6-hydroxydopamine. We found that lipid removal, inhibition of the prostaglandin E2 receptor 2 (EP2), and its signaling pathway were able to block the effects of MSC-CM on a pure population of dopaminergic neurons. Moreover, in primary mesencephalic cultures and hiPSC-derived neurons, inhibition of EP2 signaling caused a reduction in the number of dopaminergic neurons obtained in culture. Taken together, our results demonstrate for the first time the involvement of prostaglandin signaling from MSC in dopaminergic neuron survival through EP2 receptors, and suggest new approaches for treatment of Parkinson's disease.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fármacos Neuroprotetores/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Ratos Sprague-Dawley , Receptores de Prostaglandina E Subtipo EP2/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
20.
Stem Cell Res ; 25: 1-5, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29246570

RESUMO

A skin biopsy was obtained from a 25-year-old female patient with autosomal recessive Alport syndrome (ARAS) with the homozygous COL4A3 mutation c.345delG, p.(P166Lfs*37). Dermal fibroblasts were derived and reprogrammed by nucleofection with episomal plasmids carrying OCT3/4, SOX2, KLF4 LIN28, L-MYC and p53shRNA. The generated induced Pluripotent Stem Cell (iPSC) clone AS FiPS1 Ep6F-2 was free of genomically integrated reprogramming genes, had the specific homozygous mutation, a stable karyotype, expressed pluripotency markers and generated embryoid bodies which were differentiated towards the three germ layers in vitro. This iPSC line offers a useful resource to study Alport syndrome pathomechanisms and drug testing.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Nefrite Hereditária/metabolismo , Adulto , Células Cultivadas , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Éxons/genética , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Técnicas In Vitro , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Mutação/genética , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Plasmídeos/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA