RESUMO
Plasma high density lipoprotein-cholesterol (HDL-C) concentrations negatively correlate with atherosclerotic cardiovascular disease. HDL is thought to have several atheroprotective functions, which are likely distinct from the epidemiological inverse relationship between HDL-C levels and risk. Specifically, strategies that reduce HDL-C while promoting reverse cholesterol transport (RCT) may have therapeutic value. The major product of the serum opacity factor (SOF) reaction versus HDL is a cholesteryl ester (CE)-rich microemulsion (CERM), which contains apo E and the CE of ~400,000 HDL particles. Huh7 hepatocytes take up CE faster when delivered as CERM than as HDL, in part via the LDL-receptor (LDLR). Here we compared the final RCT step, hepatic uptake and subsequent intracellular processing to cholesterol and bile salts for radiolabeled HDL-, CERM- and LDL-CE by Huh7 cells and in vivo in C57BL/6J mice. In Huh7 cells, uptake from LDL was greater than from CERM (2-4X) and HDL (5-10X). Halftimes for [(14)C]CE hydrolysis were 3.0±0.2, 4.4±0.6 and 5.4±0.7h respectively for HDL, CERM and LDL-CE. The fraction of sterols secreted as bile acids was ~50% by 8h for all three particles. HDL, CERM and LDL-CE metabolism in mice showed efficient plasma clearance of CERM-CE, liver uptake and metabolism, and secretion as bile acids into the gall bladder. This work supports the therapeutic potential of the SOF reaction, which diverts HDL-CE to the LDLR, thereby increasing hepatic CE uptake, and sterol disposal as bile acids.
Assuntos
Anticolesterolemiantes/farmacologia , Ácidos e Sais Biliares/metabolismo , Ésteres do Colesterol/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Peptídeo Hidrolases/farmacologia , Animais , Apolipoproteínas E/metabolismo , Linhagem Celular Tumoral , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Regulação da Expressão Gênica , Humanos , Hidrólise , Cinética , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BLRESUMO
OBJECTIVE: HIV patients on antiretroviral therapy (HIV/ART) exhibit a unique atherogenic dyslipidemic profile with hypertriglyceridemia (HTG) and low plasma concentrations of high-density lipoprotein (HDL) cholesterol. In the Heart Positive Study of HIV/ART patients, a hypolipidemic therapy of fenofibrate, niacin, diet, and exercise reduced HTG and plasma non-HDL cholesterol concentrations and raised plasma HDL cholesterol and adiponectin concentrations. We tested the hypothesis that HIV/ART HDL have abnormal structures and properties and are dysfunctional. APPROACH AND RESULTS: Hypolipidemic therapy reduced the TG contents of low-density lipoprotein and HDL. At baseline, HIV/ART low-density lipoproteins were more triglyceride (TG)-rich and HDL were more TG- and cholesteryl ester-rich than the corresponding lipoproteins from normolipidemic (NL) subjects. Very-low-density lipoproteins, low-density lipoprotein, and HDL were larger than the corresponding lipoproteins from NL subjects; HIV/ART HDL were less stable than NL HDL. HDL-[(3)H]cholesteryl ester uptake by Huh7 hepatocytes was used to assess HDL functionality. HIV/ART plasma were found to contain significantly less competitive inhibition activity for hepatocyte HDL-cholesteryl ester uptake than NL plasma were found to contain (P<0.001). CONCLUSIONS: Compared with NL subjects, lipoproteins from HIV/ART patients are larger and more neutral lipid-rich, and their HDL are less stable and less receptor-competent. On the basis of this work and previous studies of lipase activity in HIV, we present a model in which plasma lipolytic activities or hepatic cholesteryl ester uptake are impaired in HIV/ART patients. These findings provide a rationale to determine whether the distinctive lipoprotein structure, properties, and function of HIV/ART HDL predict atherosclerosis as assessed by carotid artery intimal medial thickness.
Assuntos
Antirretrovirais/efeitos adversos , Infecções por HIV/tratamento farmacológico , Hiperlipidemias/induzido quimicamente , Lipoproteínas HDL/sangue , Biomarcadores/sangue , Linhagem Celular Tumoral , Ésteres do Colesterol/metabolismo , Terapia Combinada , Dieta , Exercício Físico , Ácidos Fíbricos/uso terapêutico , Infecções por HIV/sangue , Infecções por HIV/diagnóstico , Hepatócitos/metabolismo , Humanos , Hiperlipidemias/sangue , Hiperlipidemias/terapia , Hipolipemiantes/uso terapêutico , Lipoproteínas LDL/sangue , Lipoproteínas VLDL/sangue , Niacina/uso terapêutico , Estabilidade Proteica , Receptores de Lipoproteínas/metabolismo , Fatores de Tempo , Resultado do Tratamento , Triglicerídeos/sangueRESUMO
OBJECTIVE: Current evidence suggests that oxidatively modified human plasma low-density lipoproteins (ox-LDLs) are proatherogenic and cytotoxic to endothelial and vascular smooth muscle cells. The present study describes a method using ion-exchange chromatography that is capable of large-scale subfractionation of LDL for adequate analyses of composition or bioactivities. METHODS AND RESULTS: LDLs from normolipidemic (N-LDL) and homozygous familial hypercholesterolemic (FH-LDL) subjects were separated into 5 subfractions (L1 through L5) by high-capacity ion-exchange chromatography. The most strongly retained fraction from FH subjects, FH-L5, suppressed DNA synthesis in cultured bovine aortic endothelial cells and stimulated mononuclear cell adhesion to cultured endothelial cells under flow conditions in vitro. L5, which represented 1.1+/-0.2% and 3.7+/-1.7% of the LDL from N-LDL and FH-LDL, respectively, was more triglyceride-rich (17% versus 5%) and cholesteryl ester-poor (23% versus 33%) than were L1 through L4. Electrophoretic mobilities on agarose gels increased from L1 to L5. According to SDS-PAGE, apolipoprotein B-100 in N-LDL fractions L1 through L5 appeared as a single approximately 500-kDa band. In contrast, the fractions isolated from FH-LDL showed substantial fragmentation of the apolipoprotein B-100, including bands between 200 and 116 kDa. Competitive ELISA analyses using a malondialdehyde-specific monoclonal antibody against Cu2+ ox-LDL suggest that FH-L5 is malondialdehyde-modified. CONCLUSIONS: Relative to N-LDL, FH-LDL contains higher concentrations of a fraction, L5, that exhibits distinctive physicochemical properties and biological activities that may contribute to initiation and progression of atherogenesis in vivo.