Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30106723

RESUMO

The kidney is an anisotropic organ, with higher elasticity along versus across nephrons. The degree of mechanical anisotropy in the kidney may be diagnostically relevant if properly exploited; however, if improperly controlled, anisotropy may confound stiffness measurements. The purpose of this study is to demonstrate the clinical feasibility of acoustic radiation force (ARF)-induced peak displacement (PD) measures for both exploiting and obviating mechanical anisotropy in the cortex of human kidney allografts, in vivo. Validation of the imaging methods is provided by preclinical studies in pig kidneys, in which ARF-induced PD values were significantly higher ( , Wilcoxon) when the transducer executing asymmetric ARF was oriented across versus along the nephrons. The ratio of these PD values obtained with the transducer oriented across versus along the nephrons strongly linearly correlated ( R2 = 0.95 ) to the ratio of shear moduli measured by shear wave elasticity imaging. On the contrary, when a symmetric ARF was implemented, no significant difference in PD was observed ( p > 0.01 ). Similar results were demonstrated in vivo in the kidney allografts of 14 patients. The symmetric ARF produced PD measures with no significant difference ( p > 0.01 ) between along versus across alignments, but the asymmetric ARF yielded PD ratios that remained constant over a six-month observation period post-transplantation, consistent with stable serum creatinine level and urine protein-to-creatinine ratio in the same patient population ( p > 0.01 ). The results of this pilot in vivo clinical study suggest the feasibility of 1) implementing symmetrical ARF to obviate mechanical anisotropy in the kidney cortex when anisotropy is a confounding factor and 2) implementing asymmetric ARF to exploit mechanical anisotropy when mechanical anisotropy is a potentially relevant biomarker.


Assuntos
Aloenxertos , Técnicas de Imagem por Elasticidade/métodos , Córtex Renal , Transplante de Rim , Adulto , Idoso , Aloenxertos/diagnóstico por imagem , Aloenxertos/fisiologia , Animais , Anisotropia , Módulo de Elasticidade/fisiologia , Feminino , Humanos , Córtex Renal/diagnóstico por imagem , Córtex Renal/fisiologia , Masculino , Pessoa de Meia-Idade , Insuficiência Renal Crônica/diagnóstico por imagem , Insuficiência Renal Crônica/cirurgia , Suínos
2.
Blood ; 127(5): 565-71, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26702064

RESUMO

Factor VII (FVII) deficiency is a rare autosomal recessive bleeding disorder treated by infusion of fresh-frozen plasma, plasma-derived FVII concentrates and low-dose recombinant activated FVII. Clinical data suggest that a mild elevation of plasma FVII levels (>10% normal) results in improved hemostasis. Research dogs with a G96E missense FVII mutation (FVII-G96E) have <1% FVII activity. By western blot, we show that they have undetectable plasmatic antigen, thus representing the most prevalent type of human FVII deficiency (low antigen/activity). In these dogs, we determine the feasibility of a gene therapy approach using liver-directed, adeno-associated viral (AAV) serotype 8 vector delivery of a canine FVII (cFVII) zymogen transgene. FVII-G96E dogs received escalating AAV doses (2E11 to 4.95E13 vector genomes [vg] per kg). Clinically therapeutic expression (15% normal) was attained with as low as 6E11 vg/kg of AAV and has been stable for >1 year (ongoing) without antibody formation to the cFVII transgene. Sustained and supraphysiological expression of 770% normal was observed using 4.95E13 vg/kg of AAV (2.6 years, ongoing). No evidence of pathological activation of coagulation or detrimental animal physiology was observed as platelet counts, d-dimer, fibrinogen levels, and serum chemistries remained normal in all dogs (cumulative 6.4 years). We observed a transient and noninhibitory immunoglobulin G class 2 response against cFVII only in the dog receiving the highest AAV dose. In conclusion, in the only large-animal model representing the majority of FVII mutation types, our data are first to demonstrate the feasibility, safety, and long-term duration of AAV-mediated correction of FVII deficiency.


Assuntos
Deficiência do Fator VII/genética , Deficiência do Fator VII/terapia , Fator VII/genética , Terapia Genética , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Precursores de Proteínas/genética , Adenoviridae/genética , Animais , Cães , Deficiência do Fator VII/sangue , Expressão Gênica , Vetores Genéticos/administração & dosagem , Células HEK293 , Humanos , Mutação Puntual , Transgenes
3.
Methods Mol Biol ; 1114: 413-26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24557919

RESUMO

The liver is a very complex organ with a large variety of functions, making it an attractive organ for gene replacement therapy. Many genetic disorders can be corrected by delivering gene products directly into the liver using viral vectors. In this chapter, we will describe gene delivery via portal vein administration in mice and dogs to correct the blood coagulation disorder hemophilia B. Although there are multiple delivery routes for both viral and non-viral vectors in animals, portal vein administration delivers vectors directly and efficiently into the liver. Complete correction of murine hemophilia B and multi-year near-correction of canine hemophilia B have been achieved following portal vein delivery of adeno-associated viral (AAV) vectors expressing factor IX from hepatocyte-specific promoters. Peripheral vein injection can lead to increased vector dissemination to off-target organ such as the lung and spleen. Below, we will describe portal vein injection delivery route via laparotomy.


Assuntos
Dependovirus/genética , Fator IX/genética , Terapia Genética , Vetores Genéticos/genética , Hemofilia B/genética , Hemofilia B/terapia , Administração Intravenosa , Animais , Cães , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Camundongos , Veia Porta/cirurgia
4.
Nat Commun ; 4: 2773, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24253479

RESUMO

It is essential to improve therapies for controlling excessive bleeding in patients with haemorrhagic disorders. As activated blood platelets mediate the primary response to vascular injury, we hypothesize that storage of coagulation Factor VIII within platelets may provide a locally inducible treatment to maintain haemostasis for haemophilia A. Here we show that haematopoietic stem cell gene therapy can prevent the occurrence of severe bleeding episodes in dogs with haemophilia A for at least 2.5 years after transplantation. We employ a clinically relevant strategy based on a lentiviral vector encoding the ITGA2B gene promoter, which drives platelet-specific expression of human FVIII permitting storage and release of FVIII from activated platelets. One animal receives a hybrid molecule of FVIII fused to the von Willebrand Factor propeptide-D2 domain that traffics FVIII more effectively into α-granules. The absence of inhibitory antibodies to platelet-derived FVIII indicates that this approach may have benefit in patients who reject FVIII replacement therapies. Thus, platelet FVIII may provide effective long-term control of bleeding in patients with haemophilia A.


Assuntos
Plaquetas/fisiologia , Doenças do Cão/terapia , Fator VIII/genética , Terapia Genética/veterinária , Hemofilia A/veterinária , Hemostasia , Integrina alfa2/metabolismo , Animais , Doenças do Cão/genética , Cães , Regulação da Expressão Gênica/fisiologia , Terapia Genética/métodos , Hemofilia A/terapia , Humanos , Integrina alfa2/genética
5.
ILAR J ; 50(2): 144-67, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19293459

RESUMO

Dogs with hemophilia A, hemophilia B, von Willebrand disease (VWD), and factor VII deficiency faithfully recapitulate the severe bleeding phenotype that occurs in humans with these disorders. The first rational approach to diagnosing these bleeding disorders became possible with the development of reliable assays in the 1940s through research that used these dogs. For the next 60 years, treatment consisted of replacement of the associated missing or dysfunctional protein, first with plasma-derived products and subsequently with recombinant products. Research has consistently shown that replacement products that are safe and efficacious in these dogs prove to be safe and efficacious in humans. But these highly effective products require repeated administration and are limited in supply and expensive; in addition, plasma-derived products have transmitted bloodborne pathogens. Recombinant proteins have all but eliminated inadvertent transmission of bloodborne pathogens, but the other limitations persist. Thus, gene therapy is an attractive alternative strategy in these monogenic disorders and has been actively pursued since the early 1990s. To date, several modalities of gene transfer in canine hemophilia have proven to be safe, produced easily detectable levels of transgene products in plasma that have persisted for years in association with reduced bleeding, and correctly predicted the vector dose required in a human hemophilia B liver-based trial. Very recently, however, researchers have identified an immune response to adeno-associated viral gene transfer vector capsid proteins in a human liver-based trial that was not present in preclinical testing in rodents, dogs, or nonhuman primates. This article provides a review of the strengths and limitations of canine hemophilia, VWD, and factor VII deficiency models and of their historical and current role in the development of improved therapy for humans with these inherited bleeding disorders.


Assuntos
Modelos Animais de Doenças , Deficiência do Fator VII/terapia , Terapia Genética/métodos , Hemofilia A/terapia , Hemofilia B/terapia , Proteínas/administração & dosagem , Doenças de von Willebrand/terapia , Animais , Coagulação Sanguínea/fisiologia , Cães , Deficiência do Fator VII/genética , Vetores Genéticos , Hemofilia A/genética , Hemofilia B/genética , Transplante de Fígado/métodos , Doenças de von Willebrand/genética , Fator de von Willebrand/metabolismo
6.
Blood ; 101(10): 3924-32, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12531787

RESUMO

Hemophilia B is a bleeding disorder resulting from factor IX (FIX) deficiency that might be treated with gene therapy. Neonatal delivery would correct the disease sooner than would transfer into adults, and could reduce immunological responses. Neonatal mice were injected intravenously with a Moloney murine leukemia virus-based retroviral vector (RV) expressing canine FIX (cFIX). They achieved 150% to 280% of normal cFIX antigen levels in plasma (100% is 5 microg/mL), which was functional in vitro and in vivo. Three newborn hemophilia B dogs that were injected intravenously with RV achieved 12% to 36% of normal cFIX antigen levels, which improved coagulation tests. Only one mild bleed has occurred during 14 total months of evaluation. This is the first demonstration of prolonged expression after neonatal gene therapy for hemophilia B in mice or dogs. Most animals failed to make antibodies to cFIX, demonstrating that neonatal gene transfer may induce tolerance. Although hepatocytes from newborns replicate, those from adults do not. Adult mice therefore received hepatocyte growth factor to induce hepatocyte replication prior to intravenous injection of RV. This resulted in expression of 35% of normal cFIX antigen levels for 11 months, although all mice produced anti-cFIX antibodies. This is the first demonstration that high levels of FIX activity can be achieved with an RV in adults without a partial hepatectomy to induce hepatocyte replication. We conclude that RV-mediated hepatic gene therapy is effective for treating hemophilia B in mice and dogs, although the immune system may complicate gene transfer in adults.


Assuntos
Fator IX/genética , Terapia Genética , Hemofilia B/terapia , Fator de Crescimento de Hepatócito/farmacologia , Retroviridae/genética , Animais , Animais Recém-Nascidos , Formação de Anticorpos , Cães , Fator IX/metabolismo , Vetores Genéticos , Hemofilia B/sangue , Hemofilia B/imunologia , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA