Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 2(4): 335-350, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32694609

RESUMO

Plasticity of cancer metabolism can be a major obstacle to efficient targeting of tumour-specific metabolic vulnerabilities. Here, we identify the compensatory mechanisms following the inhibition of major pathways of central carbon metabolism in c-MYC-induced liver tumours. We find that, while inhibition of both glutaminase isoforms (Gls1 and Gls2) in tumours considerably delays tumourigenesis, glutamine catabolism continues, owing to the action of amidotransferases. Synergistic inhibition of both glutaminases and compensatory amidotransferases is required to block glutamine catabolism and proliferation of mouse and human tumour cells in vitro and in vivo. Gls1 deletion is also compensated for by glycolysis. Thus, co-inhibition of Gls1 and hexokinase 2 significantly affects Krebs cycle activity and tumour formation. Finally, the inhibition of biosynthesis of either serine (Psat1-KO) or fatty acid (Fasn-KO) is compensated for by uptake of circulating nutrients, and dietary restriction of both serine and glycine or fatty acids synergistically suppresses tumourigenesis. These results highlight the high flexibility of tumour metabolism and demonstrate that either pharmacological or dietary targeting of metabolic compensatory mechanisms can improve therapeutic outcomes.


Assuntos
Neoplasias Hepáticas/metabolismo , Animais , Proliferação de Células , Glucose/metabolismo , Glutaminase/antagonistas & inibidores , Glutaminase/genética , Glutamina/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo
2.
Bio Protoc ; 7(1): e2090, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34458420

RESUMO

Functional connectivity in a neural circuit is determined by the strength, incidence, and neurotransmitter nature of its connections (Chuhma, 2015). Using optogenetics the functional synaptic connections between an identified population of neurons and defined postsynaptic target neurons may be measured systematically in order to determine the functional connectome of that identified population. Here we describe the experimental protocol used to investigate the excitatory functional connectome of ventral midbrain dopamine neurons, mediated by glutamate cotransmission ( Mingote et al., 2015 ). Dopamine neurons are made light sensitive by injecting an adeno-associated virus (AAV) encoding channelrhodopsin (ChR2) into the ventral midbrain of DATIREScre mice. The efficacy and specificity of ChR2 expression in dopamine neurons is verified by immunofluorescence for the dopamine-synthetic enzyme tyrosine hydroxylase. Then, slice patch-clamp recordings are made from neurons in regions recipient to dopamine neuron projections and the incidence and strength of excitatory connections determined. The summary of the incidence and strength of connections in all regions recipient to dopamine neuron projections constitute the functional connectome.

3.
Nat Med ; 21(10): 1182-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26390244

RESUMO

Activating mutations in NOTCH1 are common in T cell acute lymphoblastic leukemia (T-ALL). Here we identify glutaminolysis as a critical pathway for leukemia cell growth downstream of NOTCH1 and a key determinant of the response to anti-NOTCH1 therapies in vivo. Mechanistically, inhibition of NOTCH1 signaling in T-ALL induces a metabolic shutdown, with prominent inhibition of glutaminolysis and triggers autophagy as a salvage pathway supporting leukemia cell metabolism. Consequently, inhibition of glutaminolysis and inhibition of autophagy strongly and synergistically enhance the antileukemic effects of anti-NOTCH1 therapy in mice harboring T-ALL. Moreover, we demonstrate that Pten loss upregulates glycolysis and consequently rescues leukemic cell metabolism, thereby abrogating the antileukemic effects of NOTCH1 inhibition. Overall, these results identify glutaminolysis as a major node in cancer metabolism controlled by NOTCH1 and as therapeutic target for the treatment of T-ALL.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Receptor Notch1/antagonistas & inibidores , Animais , Glutamina/metabolismo , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo
4.
J Clin Invest ; 125(6): 2293-306, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25915584

RESUMO

Glutaminase (GLS), which converts glutamine to glutamate, plays a key role in cancer cell metabolism, growth, and proliferation. GLS is being explored as a cancer therapeutic target, but whether GLS inhibitors affect cancer cell-autonomous growth or the host microenvironment or have off-target effects is unknown. Here, we report that loss of one copy of Gls blunted tumor progression in an immune-competent MYC-mediated mouse model of hepatocellular carcinoma. Compared with results in untreated animals with MYC-induced hepatocellular carcinoma, administration of the GLS-specific inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) prolonged survival without any apparent toxicities. BPTES also inhibited growth of a MYC-dependent human B cell lymphoma cell line (P493) by blocking DNA replication, leading to cell death and fragmentation. In mice harboring P493 tumor xenografts, BPTES treatment inhibited tumor cell growth; however, P493 xenografts expressing a BPTES-resistant GLS mutant (GLS-K325A) or overexpressing GLS were not affected by BPTES treatment. Moreover, a customized Vivo-Morpholino that targets human GLS mRNA markedly inhibited P493 xenograft growth without affecting mouse Gls expression. Conversely, a Vivo-Morpholino directed at mouse Gls had no antitumor activity in vivo. Collectively, our studies demonstrate that GLS is required for tumorigenesis and support small molecule and genetic inhibition of GLS as potential approaches for targeting the tumor cell-autonomous dependence on GLS for cancer therapy.


Assuntos
Carcinoma Hepatocelular/enzimologia , Transformação Celular Neoplásica/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glutaminase/biossíntese , Neoplasias Hepáticas Experimentais/enzimologia , Substituição de Aminoácidos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Glutaminase/antagonistas & inibidores , Glutaminase/genética , Xenoenxertos , Humanos , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Mutação de Sentido Incorreto , Transplante de Neoplasias , Sulfetos/farmacologia , Tiadiazóis/farmacologia
6.
Neuron ; 65(5): 643-56, 2010 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-20223200

RESUMO

Dopamine neurons in the ventral tegmental area (VTA) play an important role in the motivational systems underlying drug addiction, and recent work has suggested that they also release the excitatory neurotransmitter glutamate. To assess a physiological role for glutamate corelease, we disrupted the expression of vesicular glutamate transporter 2 selectively in dopamine neurons. The conditional knockout abolishes glutamate release from midbrain dopamine neurons in culture and severely reduces their excitatory synaptic output in mesoaccumbens slices. Baseline motor behavior is not affected, but stimulation of locomotor activity by cocaine is impaired, apparently through a selective reduction of dopamine stores in the projection of VTA neurons to ventral striatum. Glutamate co-entry promotes monoamine storage by increasing the pH gradient that drives vesicular monoamine transport. Remarkably, low concentrations of glutamate acidify synaptic vesicles more slowly but to a greater extent than equimolar Cl(-), indicating a distinct, presynaptic mechanism to regulate quantal size.


Assuntos
Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/fisiologia , Trifosfato de Adenosina/farmacologia , Análise de Variância , Animais , Animais Recém-Nascidos , Catecolaminas/metabolismo , Linhagem Celular Transformada , Cloretos/farmacologia , Colina/farmacologia , Cocaína/farmacologia , Corpo Estriado/citologia , Inibidores da Captação de Dopamina/farmacologia , Ácido Glutâmico/farmacologia , Proteínas de Fluorescência Verde/genética , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Proteínas Luminescentes/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ratos , Serotonina/metabolismo , Vesículas Sinápticas/metabolismo , Transfecção/métodos , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA