Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 615(7952): 402-403, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859662
2.
Hum Reprod ; 38(4): 655-670, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807972

RESUMO

STUDY QUESTION: Is the vertebrate protein Dead end (DND1) a causative factor for human infertility and can novel in vivo assays in zebrafish help in evaluating this? SUMMARY ANSWER: Combining patient genetic data with functional in vivo assays in zebrafish reveals a possible role for DND1 in human male fertility. WHAT IS KNOWN ALREADY: About 7% of the male population is affected by infertility but linking specific gene variants to the disease is challenging. The function of the DND1 protein was shown to be critical for germ cell development in several model organisms but a reliable and cost-effective method for evaluating the activity of the protein in the context of human male infertility is still missing. STUDY DESIGN, SIZE, DURATION: Exome data from 1305 men included in the Male Reproductive Genomics cohort were examined in this study. A total of 1114 of the patients showed severely impaired spermatogenesis but were otherwise healthy. Eighty-five men with intact spermatogenesis were included in the study as controls. PARTICIPANTS/MATERIALS, SETTING, METHODS: We screened the human exome data for rare, stop-gain, frameshift, splice site, as well as missense variants in DND1. The results were validated by Sanger sequencing. Immunohistochemical techniques and, when possible, segregation analyses were performed for patients with identified DND1 variants. The amino acid exchange in the human variant was mimicked at the corresponding site of the zebrafish protein. Using different aspects of germline development in live zebrafish embryos as biological assays, we examined the activity level of these DND1 protein variants. MAIN RESULTS AND THE ROLE OF CHANCE: In human exome sequencing data, we identified four heterozygous variants in DND1 (three missense and one frameshift variant) in five unrelated patients. The function of all of the variants was examined in the zebrafish and one of those was studied in more depth in this model. We demonstrate the use of zebrafish assays as a rapid and effective biological readout for evaluating the possible impact of multiple gene variants on male fertility. This in vivo approach allowed us to assess the direct impact of the variants on germ cell function in the context of the native germline. Focusing on the DND1 gene, we find that zebrafish germ cells, expressing orthologs of DND1 variants identified in infertile men, failed to arrive correctly at the position where the gonad develops and exhibited defects in cell fate maintenance. Importantly, our analysis facilitated the evaluation of single nucleotide variants, whose impact on protein function is difficult to predict, and allowed us to distinguish variants that do not affect the protein's activity from those that strongly reduce it and could thus potentially be the primary cause for the pathological condition. These aberrations in germline development resemble the testicular phenotype of azoospermic patients. LIMITATIONS, REASONS FOR CAUTION: The pipeline we present requires access to zebrafish embryos and to basic imaging equipment. The notion that the activity of the protein in the zebrafish-based assays is relevant for the human homolog is well supported by previous knowledge. Nevertheless, the human protein may differ in some respects from its homologue in zebrafish. Thus, the assay should be considered only one of the parameters used in defining DND1 variants as causative or non-causative for infertility. WIDER IMPLICATIONS OF THE FINDINGS: Using DND1 as an example, we have shown that the approach described in this study, relying on bridging between clinical findings and fundamental cell biology, can help to establish links between novel human disease candidate genes and fertility. In particular, the power of the approach we developed is manifested by the fact that it allows the identification of DND1 variants that arose de novo. The strategy presented here can be applied to different genes in other disease contexts. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by the German Research Foundation, Clinical Research Unit, CRU326 'Male Germ Cells'. There are no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Infertilidade Masculina , Peixe-Zebra , Animais , Humanos , Masculino , Peixe-Zebra/genética , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Testículo/patologia , Fertilidade , Fenótipo , Proteínas de Neoplasias/genética
3.
Front Cell Dev Biol ; 10: 926394, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912094

RESUMO

In the context of development, tissue homeostasis, immune surveillance, and pathological conditions such as cancer metastasis and inflammation, migrating amoeboid cells commonly form protrusions called blebs. For these spherical protrusions to inflate, the force for pushing the membrane forward depends on actomyosin contraction rather than active actin assembly. Accordingly, blebs exhibit distinct dynamics and regulation. In this review, we first examine the mechanisms that control the inflation of blebs and bias their formation in the direction of the cell's leading edge and present current views concerning the role blebs play in promoting cell locomotion. While certain motile amoeboid cells exclusively form blebs, others form blebs as well as other protrusion types. We describe factors in the environment and cell-intrinsic activities that determine the proportion of the different forms of protrusions cells produce.

4.
Nat Commun ; 13(1): 1677, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354817

RESUMO

The mesothelium lines body cavities and surrounds internal organs, widely contributing to homeostasis and regeneration. Mesothelium disruptions cause visceral anomalies and mesothelioma tumors. Nonetheless, the embryonic emergence of mesothelia remains incompletely understood. Here, we track mesothelial origins in the lateral plate mesoderm (LPM) using zebrafish. Single-cell transcriptomics uncovers a post-gastrulation gene expression signature centered on hand2 in distinct LPM progenitor cells. We map mesothelial progenitors to lateral-most, hand2-expressing LPM and confirm conservation in mouse. Time-lapse imaging of zebrafish hand2 reporter embryos captures mesothelium formation including pericardium, visceral, and parietal peritoneum. We find primordial germ cells migrate with the forming mesothelium as ventral migration boundary. Functionally, hand2 loss disrupts mesothelium formation with reduced progenitor cells and perturbed migration. In mouse and human mesothelioma, we document expression of LPM-associated transcription factors including Hand2, suggesting re-initiation of a developmental program. Our data connects mesothelium development to Hand2, expanding our understanding of mesothelial pathologies.


Assuntos
Mesotelioma , Peixe-Zebra , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Epitélio/metabolismo , Mesotelioma/genética , Camundongos , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
J Cell Biol ; 221(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35293964

RESUMO

Contact inhibition of locomotion (CIL) is a process that regulates cell motility upon collision with other cells. Improper regulation of CIL has been implicated in cancer cell dissemination. Here, we identify the cell adhesion molecule JAM-A as a central regulator of CIL in tumor cells. JAM-A is part of a multimolecular signaling complex in which tetraspanins CD9 and CD81 link JAM-A to αvß5 integrin. JAM-A binds Csk and inhibits the activity of αvß5 integrin-associated Src. Loss of JAM-A results in increased activities of downstream effectors of Src, including Erk1/2, Abi1, and paxillin, as well as increased activity of Rac1 at cell-cell contact sites. As a consequence, JAM-A-depleted cells show increased motility, have a higher cell-matrix turnover, and fail to halt migration when colliding with other cells. We also find that proper regulation of CIL depends on αvß5 integrin engagement. Our findings identify a molecular mechanism that regulates CIL in tumor cells and have implications on tumor cell dissemination.


Assuntos
Inibição de Contato , Adesão Celular , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Movimento Celular , Inibição de Contato/genética , Receptores de Vitronectina , Tetraspaninas
7.
PLoS One ; 16(10): e0258427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34653201

RESUMO

The DND microRNA-mediated repression inhibitor 1 (DND1) is a conserved RNA binding protein (RBP) that plays important roles in survival and fate maintenance of primordial germ cells (PGCs) and in the development of the male germline in zebrafish and mice. Dead end was shown to be expressed in human pluripotent stem cells (PSCs), PGCs and spermatogonia, but little is known about its specific role concerning pluripotency and human germline development. Here we use CRISPR/Cas mediated knockout and PGC-like cell (PGCLC) differentiation in human iPSCs to determine if DND1 (1) plays a role in maintaining pluripotency and (2) in specification of PGCLCs. We generated several clonal lines carrying biallelic loss of function mutations and analysed their differentiation potential towards PGCLCs and their gene expression on RNA and protein levels via RNA sequencing and mass spectrometry. The generated knockout iPSCs showed no differences in pluripotency gene expression, proliferation, or trilineage differentiation potential, but yielded reduced numbers of PGCLCs as compared with their parental iPSCs. RNAseq analysis of mutated PGCLCs revealed that the overall gene expression remains like non-mutated PGCLCs. However, reduced expression of genes associated with PGC differentiation and maintenance (e.g., NANOS3, PRDM1) was observed. Together, we show that DND1 iPSCs maintain their pluripotency but exhibit a reduced differentiation to PGCLCs. This versatile model will allow further analysis of the specific mechanisms by which DND1 influences PGC differentiation and maintenance.


Assuntos
Células Germinativas/metabolismo , Proteínas de Neoplasias/metabolismo , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Edição de Genes , Expressão Gênica , Células Germinativas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Neoplasias/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Análise de Componente Principal , RNA/química , RNA/genética , RNA/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Análise de Célula Única
8.
Front Cell Dev Biol ; 9: 684460, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249937

RESUMO

Similar to many other organisms, zebrafish primordial germ cells (PGCs) are specified at a location distinct from that of gonadal somatic cells. Guided by chemotactic cues, PGCs migrate through embryonic tissues toward the region where the gonad develops. In this process, PGCs employ a bleb-driven amoeboid migration mode, characterized by low adhesion and high actomyosin contractility, a strategy used by other migrating cells, such as leukocytes and certain types of cancer cells. The mechanisms underlying the motility and the directed migration of PGCs should be robust to ensure arrival at the target, thereby contributing to the fertility of the organism. These features make PGCs an excellent model for studying guided single-cell migration in vivo. In this review, we present recent findings regarding the establishment and maintenance of cell polarity that are essential for motility and discuss the mechanisms by which cell polarization and directed migration are controlled by chemical and physical cues.

9.
Development ; 148(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33722898

RESUMO

Fertility and gamete reserves are maintained by asymmetric divisions of the germline stem cells to produce new stem cells or daughters that differentiate as gametes. Before entering meiosis, differentiating germ cells (GCs) of sexual animals typically undergo cystogenesis. This evolutionarily conserved process involves synchronous and incomplete mitotic divisions of a GC daughter (cystoblast) to generate sister cells connected by intercellular bridges that facilitate the exchange of materials to support rapid expansion of the gamete progenitor population. Here, we investigated cystogenesis in zebrafish and found that early GCs are connected by ring canals, and show that Deleted in azoospermia-like (Dazl), a conserved vertebrate RNA-binding protein (Rbp), is a regulator of this process. Analysis of dazl mutants revealed the essential role of Dazl in regulating incomplete cytokinesis, germline cyst formation and germline stem cell specification before the meiotic transition. Accordingly, dazl mutant GCs form defective ring canals, and ultimately remain as individual cells that fail to differentiate as meiocytes. In addition to promoting cystoblast divisions and meiotic entry, dazl is required for germline stem cell establishment and fertility.


Assuntos
Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais , Citocinese/fisiologia , Feminino , Fertilidade/genética , Fertilidade/fisiologia , Técnicas de Inativação de Genes , Masculino , Mutagênese , Células-Tronco/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Curr Top Dev Biol ; 140: 181-208, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32591074

RESUMO

Posttranscriptional regulation is a key part of controlling gene expression in different cell types, in particular in the context of specification, maintenance and differentiation of germline cells. A central regulator of these processes is the vertebrate protein Dead end (Dnd). This RNA-binding protein is important for the survival and preservation of the fate of primordial germ cells (PGCs) and for subsequent development of the male germline. In this chapter, we review the biological and molecular functions of the protein and suggest a model that takes into account the diverse roles described for Dnd in the germline. According to this model, Dnd functions as a scaffold that can bind a wide range of RNA molecules and, at the same time, provides a platform for a variety of proteins that affect posttranscriptional processes such as RNA stability and translation. This scenario offers a mechanistic basis for the control of diverse molecular processes in different contexts in germline development by the Dnd protein.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Proteínas de Ligação a RNA/genética , Transcrição Gênica/genética , Vertebrados/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Animais , Feminino , Células Germinativas/citologia , Masculino , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Vertebrados/classificação , Vertebrados/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
11.
Biophys J ; 117(8): 1485-1495, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31445681

RESUMO

Bleb-type cellular protrusions play key roles in a range of biological processes. It was recently found that bleb growth is facilitated by a local supply of membrane from tubular invaginations, but the interplay between the expanding bleb and the membrane tubes remains poorly understood. On the one hand, the membrane area stored in tubes may serve as a reservoir for bleb expansion. On the other hand, the sequestering of excess membrane in stabilized invaginations may effectively increase the cell membrane tension, which suppresses spontaneous protrusions. Here, we investigate this duality through physical modeling and in vivo experiments. In agreement with observations, our model describes the transition into a tube-flattening mode of bleb expansion while also predicting that the blebbing rate is impaired by elevating the concentration of the curved membrane proteins that form the tubes. We show both theoretically and experimentally that the stabilizing effect of tubes could be counterbalanced by the cortical myosin contractility. Our results largely suggest that proteins able to induce membrane tubulation, such as those containing N-BAR domains, can buffer the effective membrane tension-a master regulator of all cell deformations.


Assuntos
Membrana Celular/química , Extensões da Superfície Celular/química , Modelos Teóricos , Estresse Mecânico , Animais , Miosinas/química , Domínios Proteicos , Peixe-Zebra
12.
Nat Commun ; 10(1): 3054, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296860

RESUMO

Two waves of DNA methylation reprogramming occur during mammalian embryogenesis; during preimplantation development and during primordial germ cell (PGC) formation. However, it is currently unclear how evolutionarily conserved these processes are. Here we characterise the DNA methylomes of zebrafish PGCs at four developmental stages and identify retention of paternal epigenetic memory, in stark contrast to the findings in mammals. Gene expression profiling of zebrafish PGCs at the same developmental stages revealed that the embryonic germline is defined by a small number of markers that display strong developmental stage-specificity and that are independent of DNA methylation-mediated regulation. We identified promoters that are specifically targeted by DNA methylation in somatic and germline tissues during vertebrate embryogenesis and that are frequently misregulated in human cancers. Together, these detailed methylome and transcriptome maps of the zebrafish germline provide insight into vertebrate DNA methylation reprogramming and enhance our understanding of the relationships between germline fate acquisition and oncogenesis.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Germinativas/crescimento & desenvolvimento , Herança Paterna , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Embrião não Mamífero , Desenvolvimento Embrionário/genética , Epigênese Genética/fisiologia , Perfilação da Expressão Gênica , Regiões Promotoras Genéticas/genética , Sequenciamento Completo do Genoma
13.
Dev Biol ; 436(2): 84-93, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29477339

RESUMO

Zebrafish primordial germ cells (PGCs) constitute a useful in vivo model to study cell migration and to elucidate the role of specific proteins in this process. Here we report on the role of the heat shock protein Hsp90aa1.2, a protein whose RNA level is elevated in the PGCs during their migration. Reducing Hsp90aa1.2 activity slows down the progression through the cell cycle and leads to defects in the control over the MTOC number in the migrating cells. These defects result in a slower migration rate and compromise the arrival of PGCs at their target, the region where the gonad develops. Our results emphasize the importance of ensuring rapid progression through the cell cycle during single-cell migration and highlight the role of heat shock proteins in the process.


Assuntos
Ciclo Celular/genética , Divisão Celular/genética , Movimento Celular/genética , Células Germinativas/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Animais , Divisão Celular/fisiologia , Movimento Celular/fisiologia , Células Germinativas/citologia , Células Germinativas/fisiologia , Hibridização In Situ , Peixe-Zebra/genética
14.
Nat Commun ; 8(1): 2210, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263363

RESUMO

VEGFR-2/Notch signalling regulates angiogenesis in part by driving the remodelling of endothelial cell junctions and by inducing cell migration. Here, we show that VEGF-induced polarized cell elongation increases cell perimeter and decreases the relative VE-cadherin concentration at junctions, triggering polarized formation of actin-driven junction-associated intermittent lamellipodia (JAIL) under control of the WASP/WAVE/ARP2/3 complex. JAIL allow formation of new VE-cadherin adhesion sites that are critical for cell migration and monolayer integrity. Whereas at the leading edge of the cell, large JAIL drive cell migration with supportive contraction, lateral junctions show small JAIL that allow relative cell movement. VEGFR-2 activation initiates cell elongation through dephosphorylation of junctional myosin light chain II, which leads to a local loss of tension to induce JAIL-mediated junctional remodelling. These events require both microtubules and polarized Rac activity. Together, we propose a model where polarized JAIL formation drives directed cell migration and junctional remodelling during sprouting angiogenesis.


Assuntos
Actinas/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Células Endoteliais/metabolismo , Junções Intercelulares/metabolismo , Neovascularização Fisiológica/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína 2 Relacionada a Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Actinas/efeitos dos fármacos , Antígenos CD/efeitos dos fármacos , Caderinas/efeitos dos fármacos , Miosinas Cardíacas/metabolismo , Adesão Celular , Movimento Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Endotélio Vascular , Células Endoteliais da Veia Umbilical Humana , Humanos , Junções Intercelulares/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Modelos Cardiovasculares , Cadeias Leves de Miosina/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Pseudópodes/fisiologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Remodelação Vascular , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo
15.
Dev Cell ; 43(6): 704-715.e5, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29257950

RESUMO

Maintaining cell fate relies on robust mechanisms that prevent the differentiation of specified cells into other cell types. This is especially critical during embryogenesis, when extensive cell proliferation, patterning, and migration events take place. Here we show that vertebrate primordial germ cells (PGCs) are protected from reprogramming into other cell types by the RNA-binding protein Dead end (Dnd). PGCs knocked down for Dnd lose their characteristic morphology and adopt various somatic cell fates. Concomitantly, they gain a gene expression profile reflecting differentiation into cells of different germ layers, in a process that we could direct by expression of specific cell-fate determinants. Importantly, we visualized these events within live zebrafish embryos, which provide temporal information regarding cell reprogramming. Our results shed light on the mechanisms controlling germ cell fate maintenance and are relevant for the formation of teratoma, a tumor class composed of cells from more than one germ layer.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Diferenciação Celular/genética , Movimento Celular , Técnicas de Reprogramação Celular/métodos , Endoderma/fisiologia , Células Germinativas/metabolismo , Células Germinativas/fisiologia , Hibridização In Situ , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
16.
Curr Opin Cell Biol ; 36: 80-5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26232877

RESUMO

In the course of embryonic development, the process of cell migration is critical for establishment of the embryonic body plan, for morphogenesis and for organ function. Investigating the molecular mechanisms underlying cell migration is thus crucial for understanding developmental processes and clinical conditions resulting from abnormal cell migration such as cancer metastasis. The long-range migration of primordial germ cells toward the region at which the gonad develops occurs in embryos of various species and thus constitutes a useful in vivo model for single-cell migration. Recent studies employing zebrafish embryos have greatly contributed to the understanding of the mechanisms facilitating the migration of these cells en route to their target.


Assuntos
Movimento Celular , Células Germinativas/citologia , Peixe-Zebra , Animais , Morfogênese , Peixe-Zebra/embriologia
17.
Curr Biol ; 25(8): 1096-103, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25843033

RESUMO

Directional cell migration requires cell polarization with respect to the distribution of the guidance cue. Cell polarization often includes asymmetric distribution of response components as well as elements of the motility machinery. Importantly, the function and regulation of most of these molecules are known to be pH dependent. Intracellular pH gradients were shown to occur in certain cells migrating in vitro, but the functional relevance of such gradients for cell migration and for the response to directional cues, particularly in the intact organism, is currently unknown. In this study, we find that primordial germ cells migrating in the context of the developing embryo respond to the graded distribution of the chemokine Cxcl12 by establishing elevated intracellular pH at the cell front. We provide insight into the mechanisms by which a polar pH distribution contributes to efficient cell migration. Specifically, we show that Carbonic Anhydrase 15b, an enzyme controlling the pH in many cell types, including metastatic cancer cells, is expressed in migrating germ cells and is crucial for establishing and maintaining an asymmetric pH distribution within them. Reducing the level of the protein and thereby erasing the pH elevation at the cell front resulted in abnormal cell migration and impaired arrival at the target. The basis for the disrupted migration is found in the stringent requirement for pH conditions in the cell for regulating contractility, for the polarization of Rac1 activity, and hence for the formation of actin-rich structures at the leading edge of the migrating cells.


Assuntos
Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Quimiocinas/metabolismo , Células Germinativas/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Líquido Intracelular/química , Actinas/metabolismo , Animais , Quimiocina CXCL12/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/citologia , Células Germinativas/metabolismo , Líquido Intracelular/metabolismo , Peixe-Zebra
18.
EMBO J ; 34(10): 1309-18, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25762592

RESUMO

Chemokines are vertebrate-specific, structurally related proteins that function primarily in controlling cell movements by activating specific 7-transmembrane receptors. Chemokines play critical roles in a large number of biological processes and are also involved in a range of pathological conditions. For these reasons, chemokines are at the focus of studies in developmental biology and of clinically oriented research aimed at controlling cancer, inflammation, and immunological diseases. The small size of the zebrafish embryos, their rapid external development, and optical properties as well as the large number of eggs and the fast expansion in genetic tools available make this model an extremely useful one for studying the function of chemokines and chemokine receptors in an in vivo setting. Here, we review the findings relevant to the role that chemokines play in the context of directed single-cell migration, primarily in neutrophils and germ cells, and compare it to the collective cell migration of the zebrafish lateral line. We present the current knowledge concerning the formation of the chemokine gradient, its interpretation within the cell, and the molecular mechanisms underlying the cellular response to chemokine signals during directed migration.


Assuntos
Movimento Celular/fisiologia , Quimiocinas/metabolismo , Animais , Citocinas/metabolismo , Feminino , Masculino , Modelos Biológicos , Neutrófilos/metabolismo , Peixe-Zebra
19.
Nat Commun ; 5: 5758, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25502622

RESUMO

Tissue vascularization entails the formation of a blood vessel plexus, which remodels into arteries and veins. Here we show, by using time-lapse imaging of zebrafish fin regeneration and genetic lineage tracing of endothelial cells in the mouse retina, that vein-derived endothelial tip cells contribute to emerging arteries. Our movies uncover that arterial-fated tip cells change migration direction and migrate backwards within the expanding vascular plexus. This behaviour critically depends on chemokine receptor cxcr4a function. We show that the relevant Cxcr4a ligand Cxcl12a selectively accumulates in newly forming bone tissue even when ubiquitously overexpressed, pointing towards a tissue-intrinsic mode of chemokine gradient formation. Furthermore, we find that cxcr4a mutant cells can contribute to developing arteries when in association with wild-type cells, suggesting collective migration of endothelial cells. Together, our findings reveal specific cell migratory behaviours in the developing blood vessel plexus and uncover a conserved mode of artery formation.


Assuntos
Artérias/crescimento & desenvolvimento , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Neovascularização Fisiológica , Receptores CXCR4/metabolismo , Veias/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo , Nadadeiras de Animais/irrigação sanguínea , Nadadeiras de Animais/citologia , Nadadeiras de Animais/crescimento & desenvolvimento , Nadadeiras de Animais/metabolismo , Animais , Animais Geneticamente Modificados , Artérias/citologia , Artérias/metabolismo , Linhagem da Célula/genética , Movimento Celular , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Células Endoteliais/citologia , Endotélio Vascular/citologia , Endotélio Vascular/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Receptores CXCR4/genética , Retina/citologia , Retina/crescimento & desenvolvimento , Retina/metabolismo , Transdução de Sinais , Imagem com Lapso de Tempo , Veias/citologia , Veias/metabolismo , Gravação em Vídeo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
20.
Development ; 139(15): 2711-20, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22782722

RESUMO

The Hedgehog (Hh) pathway plays dual roles in proliferation and patterning during embryonic development, but the mechanism(s) that distinguish the mitogenic and patterning activities of Hh signalling are not fully understood. An additional level of complexity is provided by the observation that Hh signalling can both promote and inhibit cell proliferation. One model to account for this apparent paradox is that Hh signalling primarily regulates cell cycle kinetics, such that activation of Hh signalling promotes fast cycling and an earlier cell cycle exit. Here we report that activation of Hh signalling promotes endodermal cell proliferation but inhibits proliferation in neighbouring non-endodermal cells, suggesting that the cell cycle kinetics model is insufficient to account for the opposing proliferative responses to Hh signalling. We show that expression of the chemokine receptor Cxcr4a is a critical parameter that determines the proliferative response to Hh signalling, and that loss of Cxcr4a function attenuates the transcription of cell cycle regulator targets of Hh signalling without affecting general transcriptional targets. We show that Cxcr4a inhibits PKA activity independently of Hh signalling, and propose that Cxcr4a enhances Hh-dependent proliferation by promoting the activity of Gli1. Our results indicate that Cxcr4a is required for Hh-dependent cell proliferation but not for Hh-dependent patterning, and suggest that the parallel activation of Cxcr4a is required to modulate the Hh pathway to distinguish between patterning and proliferation.


Assuntos
Endoderma/metabolismo , Receptores CXCR4/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Alelos , Animais , Padronização Corporal , Proliferação de Células , Cruzamentos Genéticos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Endoderma/citologia , Proteínas de Fluorescência Verde/metabolismo , Proteínas Hedgehog/metabolismo , Cinética , Camundongos , Crista Neural/citologia , RNA Mensageiro/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Transcrição Gênica , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA