Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 100(7)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35772749

RESUMO

Cattle induced to ovulate a small, physiologically immature preovulatory follicle had reduced oocyte developmental competence that resulted in decreased embryo cleavage and day 7 embryo quality compared with animals induced to ovulate a more advanced follicle. RNA-sequencing was performed on oocytes and their corresponding cumulus cells approximately 23 h after gonadotropin-releasing hormone (GnRH) administration to induce the preovulatory gonadotropin surge suggested reduced capacity for glucose metabolism and oxidative phosphorylation in the cumulus cells and oocytes from follicles ≤11.7 mm, respectively. We hypothesized that induced ovulation of a small, physiologically immature preovulatory follicle results in a suboptimal follicular microenvironment and reduced oocyte metabolic capacity. We performed a study with the objective to determine the impact of preovulatory follicle diameter and serum estradiol concentration at GnRH administration on oocyte metabolic competence and follicular fluid metabolome profiles. We synchronized the development of a preovulatory follicle and collected the follicle contents via transvaginal aspiration approximately 19 h after GnRH administration in lactating beef cows (n = 319). We determined ATP levels and mitochondrial DNA (mtDNA) copy number in 110 oocytes and performed ultra-high-performance liquid chromatography-high resolution mass spectrometry metabolomic studies on 45 follicular fluid samples. Intraoocyte ATP and the amount of ATP produced per mtDNA copy number were associated with serum estradiol concentration at GnRH and time from GnRH administration to follicle aspiration (P < 0.05). mtDNA copy number was not related to follicle diameter at GnRH, serum estradiol concentration at GnRH, or any potential covariates (P > 0.10). We detected 90 metabolites in the aspirated follicular fluid. We identified 22 metabolites associated with serum estradiol concentration at GnRH and 63 metabolites associated with follicular fluid progesterone concentration at the time of follicle aspiration (FDR < 0.10). Pathway enrichment analysis of significant metabolites suggested altered proteinogenesis, citric acid cycle, and pyrimidine metabolism in follicles of reduced estrogenic capacity pre-gonadotropin surge or reduced progesterone production by the time of follicle aspiration.


Incorporation of a fixed-time artificial insemination protocol results in improved reproductive management and genetics of the beef herd. However, a subset of animals exposed to such protocols will not display estrus prior to insemination. Behavioral estrus is indicative of the preovulatory follicle's physiological maturity and is essential for both the production of an oocyte with optimal developmental competence and preparation of the maternal environment for pregnancy establishment. Animals that do not display estrus prior to insemination and are induced to ovulate a physiologically less advanced follicle have reduced oocyte developmental competence that leads to reduced embryo cleavage rates, embryo quality, and pregnancy rates. This study investigated the impacts of reduced follicle maturity at the initiation of ovulation on the energy production capacity of the oocyte as well as follicular fluid metabolic composition. Results from this study demonstrated that follicle maturity, indicated by increased serum estradiol concentration at the initiation of ovulation, resulted in increased ATP within the oocyte as well as an increased level of metabolites involved in glucose metabolism in the follicular fluid. Increased energy production ability in the oocytes from more mature follicles could contribute to the increased cleavage rates and embryo quality seen in previous studies.


Assuntos
Estradiol , Líquido Folicular , Trifosfato de Adenosina/análise , Animais , Bovinos , DNA Mitocondrial , Feminino , Líquido Folicular/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Lactação , Oócitos , Progesterona
2.
Front Endocrinol (Lausanne) ; 12: 697505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335472

RESUMO

Atrazine is one of the most commonly used pre-emergence and early post-emergence herbicides in the world. We have shown previously that atrazine does not directly stimulate the pituitary or adrenal to trigger hormone release but acts centrally to activate a stress-like activation of the hypothalamic-pituitary-adrenal axis. In doing so, atrazine treatment has been shown to cause adrenal morphology changes characteristic of repeated stress. In this study, adrenals from atrazine treated and stressed animals were directly compared after 4 days of atrazine treatment or restraint stress. Both atrazine and stressed animals displayed reduced adrenocortical zona glomerulosa thickness and aldosterone synthase (CYP11B2) expression, indicative of repeated adrenal stimulation by adrenocorticotropic hormone. To determine if reduced CYP11B2 expression resulted in attenuated aldosterone synthesis, stressed and atrazine treated animals were challenged with angiotensin II (Ang II). As predicted, stressed animals produced less aldosterone compared to control animals when stimulated. However, atrazine treated animals had higher circulating aldosterone concentrations compared to both stressed and control groups. Ang II-induced aldosterone release was also potentiated in atrazine pretreated human adrenocortical carcinoma cells (H295R). Atrazine pretreated did not alter the expression of the rate limiting steroidogenic StAR protein or angiotensin II receptor 1. Atrazine treated animals also presented with higher basal blood pressure than vehicle treated control animals suggesting sustained elevations in circulating aldosterone levels. Our results demonstrate that treatment with the widely used herbicide, atrazine, directly increases stimulated production of aldosterone in adrenocortical cells independent of expression changes to rate limiting steroidogenic enzymes.


Assuntos
Glândulas Suprarrenais/efeitos dos fármacos , Aldosterona/metabolismo , Angiotensina II/farmacologia , Atrazina/farmacologia , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/patologia , Aldosterona/biossíntese , Animais , Células Cultivadas , Sinergismo Farmacológico , Feminino , Herbicidas/farmacologia , Ratos , Ratos Sprague-Dawley , Restrição Física/psicologia , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia
3.
Sci Rep ; 8(1): 13196, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181662

RESUMO

Infertility remains the most prevalent reason for cattle being removed from production environments. We utilized metabolomic profiling to identify metabolites in the blood plasma that may be useful in identifying infertile heifers at the time of artificial insemination (AI). Prior to AI, phenotypic parameters including body condition, weight, and reproductive organ measurements were collected. These were determined not effective at differentiating between fertile and infertile heifers. Analysis of the resulting metabolomic profiles revealed 15 metabolites at significantly different levels (T-test P ≤ 0.05), with seven metabolites having a greater than 2-fold difference (T-test P ≤ 0.05, fold change ≥2, ROC-AUC ≥ 0.80) between infertile and fertile heifers. We further characterized the utility of using the levels of these metabolites in the blood plasma to discriminate between fertile and infertile heifers. Finally, we investigated the potential role inflammation may play by comparing the expression of inflammatory cytokines in the white blood cells of infertile heifers to that of fertile heifers. We found significantly higher expression in infertile heifers of the proinflammatory markers tumor necrosis factor alpha (TNFα), interleukin 6 (IL6), and the C-X-C motif chemokine 5 (CXCL5). Our work offers potentially valuable information regarding the diagnosis of fertility problems in heifers undergoing AI.


Assuntos
Bovinos/sangue , Inseminação Artificial/veterinária , Metaboloma , Animais , Bovinos/metabolismo , Feminino , Fertilidade , Gravidez , Resultado da Gravidez
4.
Endocrinology ; 159(9): 3378-3388, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30060079

RESUMO

Atrazine (ATR) is a commonly used pre-emergence and early postemergence herbicide. Rats gavaged with ATR and its chlorometabolites desethylatrazine (DEA) and deisopropylatrazine (DIA) respond with a rapid and dose-dependent rise in plasma corticosterone, whereas the major chlorometabolite, diaminochlorotriazine (DACT), has little or no effect on corticosterone levels. In this study, we investigated the possible sites of ATR activation of the hypothalamic-pituitary-adrenal (HPA) axis. ATR treatment had no effect on adrenal weights but altered adrenal morphology. Hypophysectomized rats or rats under dexamethasone suppression did not respond to ATR treatment, suggesting that ATR does not directly stimulate the adrenal gland to induce corticosterone synthesis. Immortalized mouse corticotrophs (AtT-20) and primary rat pituitary cultures were treated with ATR, DEA, DIA, or DACT. None of the compounds induced an increase in ACTH secretion or potentiated ACTH release in conjunction with CRH on ACTH release. In female rats gavaged with ATR, pretreatment with the CRH receptor antagonist astressin completely blocked the ATR-induced rise in corticosterone concentrations, implicating CRH release in ATR-induced HPA activation. Intracerebroventricular infusion of ATR, DEA, and DIA but not DACT at concentrations equivalent to peak plasma concentrations after gavage dosing resulted in an elevation of plasma corticosterone concentrations. However, ATR did not induce c-Fos immunoreactivity in the paraventricular nucleus of the hypothalamus. These results indicate that ATR activates the HPA axis centrally and requires CRH receptor activation, but it does not stimulate cellular pathways associated with CRH neuronal excitation.


Assuntos
Atrazina/farmacologia , Corticotrofos/efeitos dos fármacos , Herbicidas/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/patologia , Hormônio Adrenocorticotrópico/efeitos dos fármacos , Hormônio Adrenocorticotrópico/metabolismo , Animais , Atrazina/análogos & derivados , Linhagem Celular , Corticosterona/metabolismo , Corticotrofos/metabolismo , Dexametasona/farmacologia , Feminino , Glucocorticoides/farmacologia , Sistema Hipotálamo-Hipofisário/metabolismo , Camundongos , Técnicas de Cultura de Órgãos , Tamanho do Órgão , Hipófise/metabolismo , Hipófise/cirurgia , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Triazinas/farmacologia
5.
Mol Reprod Dev ; 85(7): 579-589, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29697878

RESUMO

Gap junctional coupling between cumulus cells is required for oocytes to reach developmental competence. Multiple connexins, which form these gap junctions, have been found within the ovarian follicles of several species including bovine. The aim of this study was to determine the role of connexin 43 (CX43) and its relationship to embryo development, after in vitro fertilization (IVF). Cumulus-oocyte complexes (COCs) were obtained from abattoir sourced, mixed breed, bovine ovaries. COCs were isolated from follicles ranging from 2 to 5 mm in size, representing the preselected follicle pool. Immediately after isolation, two cumulus cell biopsies were collected and stored for analysis pending determination of developmental outcomes. Using in vitro procedures, COCs were individually matured, fertilized, and cultured to the blastocyst stage. Biopsies were grouped as originating from COCs that arrested at the two-cell stage (low developmental competence [LDC]) or having developed to the late morula/blastocyst stage (high developmental competence [HDC]), after IVF and embryo culture. The expression level of CX43 was found to be significantly higher in cumulus cells from COCs that had an HDC when compared with those that had an LDC. Moreover, the gap junctional intercellular coupling rate was significantly higher in cumulus from COCs deemed to have an HDC. Significantly higher expression of the cumulus health markers luteinizing hormone receptor and cytochrome p450 19A1 was found in the cumulus originating from oocytes with HDC, suggesting that this system may provide a mechanism for noninvasively testing for oocyte health in preselected bovine follicles.


Assuntos
Conexina 43/metabolismo , Células do Cúmulo/metabolismo , Desenvolvimento Embrionário/fisiologia , Junções Comunicantes/fisiologia , Oócitos/citologia , Animais , Aromatase/metabolismo , Blastocisto/citologia , Bovinos , Técnicas de Cultura Embrionária , Fertilização in vitro , Oócitos/metabolismo , Receptores do LH/metabolismo
6.
Endocrinology ; 158(10): 3526-3539, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28977590

RESUMO

Although kisspeptin is the primary stimulator of gonadotropin-releasing hormone secretion and therefore the hypothalamic-pituitary-gonadal axis, recent findings suggest kisspeptin can also regulate additional neuroendocrine processes including release of growth hormone (GH). Here we show that central delivery of kisspeptin causes a robust rise in plasma GH in fasted but not fed sheep. Kisspeptin-induced GH secretion was similar in animals fasted for 24 hours and those fasted for 72 hours, suggesting that the factors involved in kisspeptin-induced GH secretion are responsive to loss of food availability and not the result of severe negative energy balance. Pretreatment with the neuropeptide Y (NPY) Y1 receptor antagonist, BIBO 3304, blocked the effects of kisspeptin-induced GH release, implicating NPY as an intermediary. Kisspeptin treatment induced c-Fos in NPY and GH-releasing hormone (GHRH) cells of the arcuate nucleus. The same kisspeptin treatment resulted in a reduction in c-Fos in somatostatin (SS) cells in the periventricular nucleus. Finally, blockade of systemic ghrelin release or antagonism of the ghrelin receptor eliminated or reduced the ability of kisspeptin to induce GH release, suggesting the presence of ghrelin is required for kisspeptin-induced GH release in fasted animals. Our findings support the hypothesis that during short-term fasting, systemic ghrelin concentrations and NPY expression in the arcuate nucleus rise. This permits kisspeptin activation of NPY cells. In turn, NPY stimulates GHRH cells and inhibits SS cells, resulting in GH release. We propose a mechanism by which kisspeptin conveys reproductive and hormone status onto the somatotropic axis, resulting in alterations in GH release.


Assuntos
Grelina/metabolismo , Hormônio do Crescimento/efeitos dos fármacos , Kisspeptinas/farmacologia , Neuropeptídeo Y/metabolismo , Células Secretoras de Somatostatina/efeitos dos fármacos , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Arginina/análogos & derivados , Arginina/farmacologia , Atropina/farmacologia , Jejum/metabolismo , Feminino , Imunofluorescência , Hormônio do Crescimento/metabolismo , Hormônio Liberador de Hormônio do Crescimento , Antagonistas Muscarínicos/farmacologia , Oligopeptídeos/farmacologia , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores de Grelina/antagonistas & inibidores , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Ovinos , Carneiro Doméstico , Células Secretoras de Somatostatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA