Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Development ; 150(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36942737

RESUMO

Cell state transitions are often triggered by large changes in the concentrations of transcription factors and therefore large differences in their stoichiometric ratios. Whether cells can elicit transitions using modest changes in the ratios of co-expressed factors is unclear. Here, we investigate how cells in the Drosophila eye resolve state transitions by quantifying the expression dynamics of the ETS transcription factors Pnt and Yan. Eye progenitor cells maintain a relatively constant ratio of Pnt/Yan protein, despite expressing both proteins with pulsatile dynamics. A rapid and sustained twofold increase in the Pnt/Yan ratio accompanies transitions to photoreceptor fates. Genetic perturbations that modestly disrupt the Pnt/Yan ratio produce fate transition defects consistent with the hypothesis that transitions are normally driven by a twofold shift in the ratio. A biophysical model based on cooperative Yan-DNA binding coupled with non-cooperative Pnt-DNA binding illustrates how twofold ratio changes could generate ultrasensitive changes in target gene transcription to drive fate transitions. Thus, coupling cell state transitions to the Pnt/Yan ratio sensitizes the system to modest fold-changes, conferring robustness and ultrasensitivity to the developmental program.


Assuntos
Proteínas de Drosophila , Fatores de Transcrição , Animais , Fatores de Transcrição/metabolismo , Drosophila/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Repressoras/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas do Olho/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , DNA
2.
PLoS Genet ; 16(11): e1009216, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253156

RESUMO

Spatiotemporally precise and robust cell fate transitions, which depend on specific signaling cues, are fundamental to the development of appropriately patterned tissues. The fidelity and precision with which photoreceptor fates are recruited in the Drosophila eye exemplifies these principles. The fly eye consists of a highly ordered array of ~750 ommatidia, each of which contains eight distinct photoreceptors, R1-R8, specified sequentially in a precise spatial pattern. Recruitment of R1-R7 fates requires reiterative receptor tyrosine kinase / mitogen activated protein kinase (MAPK) signaling mediated by the transcriptional effector Pointed (Pnt). However the overall signaling levels experienced by R2-R5 cells are distinct from those experienced by R1, R6 and R7. A relay mechanism between two Pnt isoforms initiated by MAPK activation directs the universal transcriptional response. Here we ask how the generic Pnt response is tailored to these two rounds of photoreceptor fate transitions. We find that during R2-R5 specification PntP2 is coexpressed with a closely related but previously uncharacterized isoform, PntP3. Using CRISPR/Cas9-generated isoform specific null alleles we show that under otherwise wild type conditions, R2-R5 fate specification is robust to loss of either PntP2 or PntP3, and that the two activate pntP1 redundantly; however under conditions of reduced MAPK activity, both are required. Mechanistically, our data suggest that intrinsic activity differences between PntP2 and PntP3, combined with positive and unexpected negative transcriptional auto- and cross-regulation, buffer first-round fates against conditions of compromised RTK signaling. In contrast, in a mechanism that may be adaptive to the stronger signaling environment used to specify R1, R6 and R7 fates, the Pnt network resets to a simpler topology in which PntP2 uniquely activates pntP1 and auto-activates its own transcription. We propose that differences in expression patterns, transcriptional activities and regulatory interactions between Pnt isoforms together facilitate context-appropriate cell fate specification in different signaling environments.


Assuntos
Diferenciação Celular/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sistema de Sinalização das MAP Quinases/genética , Proteínas do Tecido Nervoso/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Alelos , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Redes Reguladoras de Genes , Modelos Animais , Proteínas do Tecido Nervoso/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas/genética , Análise Espaço-Temporal , Fatores de Transcrição/genética
3.
Development ; 145(13)2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29848501

RESUMO

The acquisition of cellular identity during development depends on precise spatiotemporal regulation of gene expression, with combinatorial interactions between transcription factors, accessory proteins and the basal transcription machinery together translating complex signaling inputs into appropriate gene expression outputs. The opposing repressive and activating inputs of the Drosophila ETS family transcription factors Yan and Pointed orchestrate numerous cell fate transitions downstream of receptor tyrosine kinase signaling, providing one of the premier systems for studying this process. Current models describe the differentiative transition as a switch from Yan-mediated repression to Pointed-mediated activation of common target genes. We describe here a new layer of regulation whereby Yan and Pointed co-occupy regulatory elements to repress gene expression in a coordinated manner, with Pointed being unexpectedly required for the genome-wide occupancy of both Yan and the co-repressor Groucho. Using even skipped as a test-case, synergistic genetic interactions between Pointed, Groucho, Yan and components of the RNA polymerase II pausing machinery suggest that Pointed integrates multiple scales of repressive regulation to confer robustness. We speculate that this mechanism may be used broadly to fine-tune the expression of many genes crucial for development.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas do Olho/genética , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética
4.
Genes Dev ; 32(5-6): 389-401, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29535190

RESUMO

Cis-regulatory modules (CRMs) are defined by unique combinations of transcription factor-binding sites. Emerging evidence suggests that the number, affinity, and organization of sites play important roles in regulating enhancer output and, ultimately, gene expression. Here, we investigate how the cis-regulatory logic of a tissue-specific CRM responsible for even-skipped (eve) induction during cardiogenesis organizes the competing inputs of two E-twenty-six (ETS) members: the activator Pointed (Pnt) and the repressor Yan. Using a combination of reporter gene assays and CRISPR-Cas9 gene editing, we suggest that Yan and Pnt have distinct syntax preferences. Not only does Yan prefer high-affinity sites, but an overlapping pair of such sites is necessary and sufficient for Yan to tune Eve expression levels in newly specified cardioblasts and block ectopic Eve induction and cell fate specification in surrounding progenitors. Mechanistically, the efficient Yan recruitment promoted by this high-affinity ETS supersite not only biases Yan-Pnt competition at the specific CRM but also organizes Yan-repressive complexes in three dimensions across the eve locus. Taken together, our results uncover a novel mechanism by which differential interpretation of CRM syntax by a competing repressor-activator pair can confer both specificity and robustness to developmental transitions.


Assuntos
Diferenciação Celular/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Miocárdio/citologia , Proteínas Repressoras/metabolismo , Animais , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Embrião não Mamífero , Elementos Facilitadores Genéticos/genética , Proteínas do Olho/química , Proteínas do Olho/genética , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Organogênese/genética , Ligação Proteica , Estrutura Quaternária de Proteína , Transporte Proteico , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Biophys J ; 112(1): 180-192, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-28076810

RESUMO

Transcription factors use both protein-DNA and protein-protein interactions to assemble appropriate complexes to regulate gene expression. Although most transcription factors operate as monomers or dimers, a few, including the E26 transformation-specific family repressors Drosophila melanogaster Yan and its human homolog TEL/ETV6, can polymerize. Although polymerization is required for both the normal and oncogenic function of Yan and TEL/ETV6, the mechanisms by which it influences the recruitment, organization, and stability of transcriptional complexes remain poorly understood. Further, a quantitative description of the DNA occupancy of a polymerizing transcription factor is lacking, and such a description would have broader applications to the conceptually related area of polymerizing chromatin regulators. To expand the theoretical basis for understanding how the oligomeric state of a transcriptional regulator influences its chromatin occupancy and function, we leveraged the extensive biochemical characterization of E26 transformation-specific factors to develop a mathematical model of Yan occupancy at chemical equilibrium. We find that spreading condensation from a specific binding site can take place in a path-independent manner given reasonable values of the free energies of specific and non-specific DNA binding and protein-protein cooperativity. Our calculations show that polymerization confers upon a transcription factor the unique ability to extend occupancy across DNA regions far from specific binding sites. In contrast, dimerization promotes recruitment to clustered binding sites and maximizes discrimination between specific and non-specific sites. We speculate that the association with non-specific DNA afforded by polymerization may enable regulatory behaviors that are well-suited to transcriptional repressors but perhaps incompatible with precise activation.


Assuntos
DNA/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Modelos Moleculares , Multimerização Proteica , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Animais , Sítios de Ligação , Estrutura Quaternária de Proteína , Especificidade por Substrato
6.
Dev Biol ; 385(2): 263-78, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24240101

RESUMO

The biochemical regulatory network downstream of receptor tyrosine kinase (RTK) signaling is controlled by two opposing ETS family members: the transcriptional activator Pointed (Pnt) and the transcriptional repressor Yan. A bistable switch model has been invoked to explain how pathway activation can drive differentiation by shifting the system from a high-Yan/low-Pnt activity state to a low-Yan/high-Pnt activity state. Although the model explains yan and pnt loss-of-function phenotypes in several different cell types, how Yan and Pointed protein expression dynamics contribute to these and other developmental transitions remains poorly understood. Toward this goal we have used a functional GFP-tagged Pnt transgene (Pnt-GFP) to perform a comparative study of Yan and Pnt protein expression throughout Drosophila development. Consistent with the prevailing model of the Pnt-Yan network, we found numerous instances where Pnt-GFP and Yan adopt a mutually exclusive pattern of expression. However we also observed many examples of co-expression. While some co-expression occurred in cells where RTK signaling is presumed low, other co-expression occurred in cells with high RTK signaling. The instances of co-expressed Yan and Pnt-GFP in tissues with high RTK signaling cannot be explained by the current model, and thus they provide important contexts for future investigation of how context-specific differences in RTK signaling, network topology, or responsiveness to other signaling inputs, affect the transcriptional response.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas do Olho/genética , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Drosophila melanogaster/embriologia , Proteínas de Fluorescência Verde/genética
7.
Development ; 140(1): 176-84, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23175629

RESUMO

The development of a functional organ requires coordinated programs of cell fate specification, terminal differentiation and morphogenesis. Whereas signaling mechanisms that specify individual cell fates are well documented, little is known about the pathways and molecules that maintain these fates stably as normal development proceeds or how their dysregulation may contribute to altered cell states in diseases such as cancer. In Drosophila, the tyrosine kinase Abelson (Abl) interfaces with multiple signaling pathways to direct epithelial and neuronal morphogenesis during embryonic and retinal development. Here we show that Abl is required for photoreceptor cell fate maintenance, as Abl mutant photoreceptors lose neuronal markers during late pupal stages but do not re-enter a proliferative state or undergo apoptosis. Failure to maintain the differentiated state correlates with impaired trafficking of the Notch receptor and ectopic Notch signaling, and can be suppressed by reducing the genetic dose of Notch or of its downstream transcriptional effector Suppressor of Hairless. Together, these data reveal a novel mechanism for maintaining the terminally differentiated state of Drosophila photoreceptors and suggest that neuronal fates in the fly retina retain plasticity late into development. Given the general evolutionary conservation of developmental signaling mechanisms, Abl-mediated regulation of Notch could be broadly relevant to cell fate maintenance and reprogramming during normal development, regeneration and oncogenic transformation.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Endocitose/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Proteínas Tirosina Quinases/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose/genética , Diferenciação Celular/genética , Proliferação de Células , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Endocitose/genética , Neurônios/enzimologia , Células Fotorreceptoras de Invertebrados/enzimologia , Transdução de Sinais/genética
8.
Genetics ; 193(2): 633-49, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23172856

RESUMO

ETS family transcription factors are evolutionarily conserved downstream effectors of Ras/MAPK signaling with critical roles in development and cancer. In Drosophila, the ETS repressor Yan regulates cell proliferation and differentiation in a variety of tissues; however, the mechanisms of Yan-mediated repression are not well understood and only a few direct target genes have been identified. Yan, like its human ortholog TEL1, self-associates through an N-terminal sterile α-motif (SAM), leading to speculation that Yan/TEL1 polymers may spread along chromatin to form large repressive domains. To test this hypothesis, we created a monomeric form of Yan by recombineering a point mutation that blocks SAM-mediated self-association into the yan genomic locus and compared its genome-wide chromatin occupancy profile to that of endogenous wild-type Yan. Consistent with the spreading model predictions, wild-type Yan-bound regions span multiple kilobases. Extended occupancy patterns appear most prominent at genes encoding crucial developmental regulators and signaling molecules and are highly conserved between Drosophila melanogaster and D. virilis, suggesting functional relevance. Surprisingly, although occupancy is reduced, the Yan monomer still makes extensive multikilobase contacts with chromatin, with an overall pattern similar to that of wild-type Yan. Despite its near-normal chromatin recruitment, the repressive function of the Yan monomer is significantly impaired, as evidenced by elevated target gene expression and failure to rescue a yan null mutation. Together our data argue that SAM-mediated polymerization contributes to the functional output of the active Yan repressive complexes that assemble across extended stretches of chromatin, but does not directly mediate recruitment to DNA or chromatin spreading.


Assuntos
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas do Olho/metabolismo , Multimerização Proteica , Proteínas Repressoras/metabolismo , Motivos de Aminoácidos , Animais , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas do Olho/química , Proteínas do Olho/genética , Expressão Gênica , Genoma de Inseto , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/genética
9.
PLoS One ; 7(5): e37151, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615925

RESUMO

Regulation of gene expression downstream of the Receptor Tyrosine Kinase signaling pathway in Drosophila relies on a transcriptional effector network featuring two conserved Ets family proteins, Yan and Pointed, known as TEL1 (ETV6) and ETS1/ETS2, respectively, in mammals. As in Drosophila, both TEL1 and ETS1/ETS2 operate as Ras pathway transcriptional effectors and misregulated activity of either factor has been implicated in many human leukemias and solid tumors. Providing essential regulation to the Drosophila network, direct interactions with the SAM domain protein Mae attenuate both Yan-mediated repression and PointedP2-mediated transcriptional activation. Given the critical contributions of Mae to the Drosophila circuitry, we investigated whether the human Ets factors TEL1 and ETS1/ETS2 could be subject to analogous regulation. Here we demonstrate that the SAM domain of human TEL2 can inhibit the transcriptional activities of ETS1/2 and TEL1. Drosophila Mae can also attenuate human ETS1/ETS2 function, suggesting there could be cross-species conservation of underlying mechanism. In contrast, Mae is not an effective inhibitor of TEL1, suggesting the mode of TEL2SAM-mediated inhibition of TEL1 may be distinct from how Drosophila Mae antagonizes Yan. Together our results reveal both further similarities and new differences between the mammalian and Drosophila networks and more broadly suggest that SAM domain-mediated interactions could provide an effective mechanism for modulating output from the TEL1 and ETS1/2 oncogenes.


Assuntos
Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteína Proto-Oncogênica c-ets-2/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica/genética , Ativação Transcricional/genética , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas do Olho/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Domínios e Motivos de Interação entre Proteínas/genética , Estrutura Terciária de Proteína/genética , Proteína Proto-Oncogênica c-ets-1/genética , Proteína Proto-Oncogênica c-ets-2/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Repressoras/genética , Variante 6 da Proteína do Fator de Translocação ETS
10.
Mol Cell Biol ; 30(5): 1158-70, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20048052

RESUMO

The ETS family transcriptional repressor Yan is an important downstream target and effector of the receptor tyrosine kinase (RTK) signaling pathway in Drosophila melanogaster. Structural and biochemical studies have shown that the N-terminal sterile alpha motif (SAM) of Yan is able to self associate to form a helical polymeric structure in vitro, although the extent and functional significance of self-association of full-length Yan remain unclear. In this study, we demonstrated that full-length Yan self associates via its SAM domain to form higher-order complexes in living cells. Introduction of SAM domain missense mutations that restrict Yan to a monomeric state reduces Yan's transcriptional repression activity and impairs its function during embryonic and retinal development. Coexpression of combinations of SAM domain mutations that permit the formation of Yan dimers, but not higher-order oligomers, increases activity relative to that of monomeric Yan, but not to the level obtained with wild-type Yan. Mechanistically, self-association directly promotes transcriptional repression of target genes independent of its role in limiting mitogen-activated protein kinase (MAPK)-mediated phosphorylation and nuclear export of Yan. Thus, we propose that the formation of higher-order Yan oligomers contributes to proper repression of target gene expression and RTK signaling output in developing tissues.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Animais , Animais Geneticamente Modificados , Sequência de Bases , Linhagem Celular , Primers do DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Olho/crescimento & desenvolvimento , Olho/metabolismo , Proteínas do Olho/genética , Recuperação de Fluorescência Após Fotodegradação , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Sistema de Sinalização das MAP Quinases , Mutação de Sentido Incorreto , Fosforilação , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-ets/química , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais , Transfecção
11.
Mech Dev ; 124(9-10): 792-806, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17588724

RESUMO

The Notch and Epidermal Growth Factor Receptor (EGFR) signaling pathways interact cooperatively and antagonistically to regulate many aspects of Drosophila development, including the eye. How output from these two signaling networks is fine-tuned to achieve the precise balance needed for specific inductive interactions and patterning events remains an open and important question. Previously, we reported that the gene split ends (spen) functions within or parallel to the EGFR pathway during midline glial cell development in the embryonic central nervous system. Here, we report that the cellular defects caused by loss of spen function in the developing eye imaginal disc place spen as both an antagonist of the Notch pathway and a positive contributor to EGFR signaling during retinal cell differentiation. Specifically, loss of spen results in broadened expression of Scabrous, ectopic activation of Notch signaling, and a corresponding reduction in Atonal expression at the morphogenetic furrow. Consistent with Spen's role in antagonizing Notch signaling, reduction of spen levels is sufficient to suppress Notch-dependent phenotypes. At least in part due to loss of Spen-dependent down-regulation of Notch signaling, loss of spen also dampens EGFR signaling as evidenced by reduced activity of MAP kinase (MAPK). This reduced MAPK activity in turn leads to a failure to limit expression of the EGFR pathway antagonist and the ETS-domain transcriptional repressor Yan and to a corresponding loss of cell fate specification in spen mutant ommatidia. We propose that Spen plays a role in modulating output from the Notch and EGFR pathways to ensure appropriate patterning during eye development.


Assuntos
Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Receptores ErbB/fisiologia , Olho/crescimento & desenvolvimento , Proteínas de Homeodomínio/fisiologia , Proteínas Nucleares/fisiologia , Receptores Notch/antagonistas & inibidores , Transdução de Sinais/fisiologia , Animais , Padronização Corporal/fisiologia , Olho/embriologia , Proteínas de Ligação a RNA , Receptores Notch/fisiologia , Regulação para Cima/fisiologia , Asas de Animais/crescimento & desenvolvimento
12.
Annu Rev Biochem ; 76: 513-38, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17341163

RESUMO

Integration of multiple signaling pathways at the level of their transcriptional effectors provides an important strategy for fine-tuning gene expression and ensuring a proper program of development. Posttranslational modifications, such as phosphorylation, play important roles in modulating transcription factor activity. The discovery that the transcription factor Eyes absent (Eya) possesses protein phosphatase activity provides an interesting new paradigm. Eya may regulate the phosphorylation state of either itself or its transcriptional cofactors, thereby directly affecting transcriptional output. The identification of a growing number of transcription factors with enzymic activity suggests that such dual-function proteins exert greater control of signaling events than previously imagined. Given the conservation of both its phosphatase and transcription factor activity across mammalian species, Eya provides an excellent model for studying how a single protein integrates these two functions under the influence of multiple signaling pathways to promote development.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais/fisiologia , Transcrição Gênica , Sequência de Aminoácidos , Animais , Ciclo Celular/fisiologia , Proteínas de Drosophila/genética , Proteínas do Olho/genética , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Dados de Sequência Molecular , Estrutura Molecular , Miosinas/metabolismo , Neoplasias/fisiopatologia , Proteínas Tirosina Fosfatases/genética , Retina/embriologia , Retina/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Transativadores/genética , Transativadores/metabolismo
13.
Crit Rev Biochem Mol Biol ; 41(6): 339-85, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17092823

RESUMO

Metazoan development relies on a highly regulated network of interactions between conserved signal transduction pathways to coordinate all aspects of cell fate specification, differentiation, and growth. In this review, we discuss the intricate interplay between the epidermal growth factor receptor (EGFR; Drosophila EGFR/DER) and the Notch signaling pathways as a paradigm for signal integration during development. First, we describe the current state of understanding of the molecular architecture of the EGFR and Notch signaling pathways that has resulted from synergistic studies in vertebrate, invertebrate, and cultured cell model systems. Then, focusing specifically on the Drosophila eye, we discuss how cooperative, sequential, and antagonistic relationships between these pathways mediate the spatially and temporally regulated processes that generate this sensory organ. The common themes underlying the coordination of the EGFR and Notch pathways appear to be broadly conserved and should, therefore, be directly applicable to elucidating mechanisms of information integration and signaling specificity in vertebrate systems.


Assuntos
Receptores ErbB/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ciclo Celular/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas do Olho , Regulação da Expressão Gênica , Ligantes , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfogênese , Proteínas do Tecido Nervoso , Neurregulinas/metabolismo , Células Fotorreceptoras de Invertebrados/anatomia & histologia , Células Fotorreceptoras de Invertebrados/fisiologia , Fator de Crescimento Transformador alfa/metabolismo , Quinases raf/metabolismo , Proteínas ras/metabolismo
14.
Annu Rev Genet ; 40: 139-57, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16771628

RESUMO

One of the challenges of modern biology is to understand how cells within a developing organism generate, integrate, and respond to dynamic informational cues. Based on over two decades of intensive research, many parts and subroutines of the responsible signal transduction networks have been identified and functionally characterized. From this work, it has become evident that a complicated interplay between signaling pathways, involving extensive feedback regulation and multiple levels of cross-talk, underlies even the "simplest" developmental decision. Thus a signaling pathway can no longer be thought of as a rigid linear process, but rather must be considered a dynamic, self-interacting, and self-adjusting network. The Epidermal Growth Factor Receptor tyrosine kinase signaling pathway provides a prime vantage point from which to explore emerging principles in developmental signal transduction.


Assuntos
Desenvolvimento Embrionário , Receptores ErbB/metabolismo , Transdução de Sinais , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Endossomos/metabolismo , Receptores ErbB/genética , Retroalimentação Fisiológica , Humanos , MicroRNAs/metabolismo , Modelos Biológicos , Receptor Cross-Talk
15.
Development ; 132(15): 3493-504, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16014514

RESUMO

Invasive cell migration in both normal development and metastatic cancer is regulated by various signaling pathways, transcription factors and cell-adhesion molecules. The coordination between these activities in the context of cell migration is poorly understood. During Drosophila oogenesis, a small group of cells called border cells exit the follicular epithelium to perform a stereotypic, invasive migration. We find that the ETS transcription factor Yan is required for border cell migration and that Yan expression is spatiotemporally regulated as border cells migrate from the anterior pole of the egg chamber towards the nurse cell-oocyte boundary. Yan expression is dependent on inputs from the JAK/STAT, Notch and Receptor Tyrosine Kinase pathways in border cells. Mechanistically, Yan functions to modulate the turnover of DE-Cadherin-dependent adhesive complexes to facilitate border cell migration. Our results suggest that Yan acts as a pivotal link between signal transduction, cell adhesion and invasive cell migration in Drosophila border cells.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Proteínas do Olho/metabolismo , Oogênese/fisiologia , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Movimento Celular , Receptores ErbB/fisiologia , Feminino , Ovário/citologia , Ovário/fisiologia , Transdução de Sinais
16.
Genetics ; 170(2): 687-95, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15802522

RESUMO

Eyes absent (EYA) proteins are defined by a conserved C-terminal EYA domain (ED) that both contributes to its function as a transcriptional coactivator by mediating protein-protein interactions and possesses intrinsic protein tyrosine phosphatase activity. Mutations in human EYA1 result in an autosomal dominant disorder called branchio-oto-renal (BOR) syndrome as well as congenital cataracts and ocular defects (OD). Both BOR- and OD-associated missense mutations alter residues in the conserved ED as do three missense mutations identified from Drosophila eya alleles. To investigate the molecular mechanisms whereby these mutations disrupt EYA function, we tested their activity in a series of assays that measured in vivo function, phosphatase activity, transcriptional capability, and protein-protein interactions. We find that the OD-associated mutations retain significant in vivo activity whereas those derived from BOR patients show a striking decrease or loss of in vivo functionality. Protein-protein interactions, either with its partner transcription factor Sine oculis or with EYA itself, were not significantly compromised. Finally, the results of the biochemical assays suggest that both loss of protein tyrosine phosphatase activity and reduced transcriptional capability contribute to the impaired EYA function associated with BOR/OD syndrome, thus shedding new light into the molecular mechanisms underlying this disease.


Assuntos
Síndrome Brânquio-Otorrenal/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas do Olho/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases/genética , Transcrição Gênica , Alelos , Sequência de Aminoácidos , Animais , Western Blotting , Proteínas de Drosophila/fisiologia , Proteínas do Olho/fisiologia , Genes Dominantes , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Cinética , Dados de Sequência Molecular , Mutação , Mutação de Sentido Incorreto , Proteínas Nucleares/fisiologia , Fenótipo , Células Fotorreceptoras de Invertebrados , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases/fisiologia , Homologia de Sequência de Aminoácidos , Ativação Transcricional , Transgenes
17.
Development ; 132(1): 3-13, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15590745

RESUMO

Context-specific integration of information received from the Notch, Transforming growth factor beta, Wingless/Wnt, Hedgehog and Epidermal growth factor receptor signaling pathways sets the stage for deployment of the retinal determination gene network (RDGN), a group of transcription factors that collectively directs the formation of the eye and other tissues. Recent investigations have revealed how these transcription factors are regulated by their interactions with each other and with effectors of the above signaling pathways. Further study of the RDGN may provide insights into how common cues can generate context-specific responses, a key aspect of developmental regulation that remains poorly understood.


Assuntos
Regulação da Expressão Gênica , Retina/fisiologia , Transdução de Sinais , Animais , Drosophila , Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Proteínas Hedgehog , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Modelos Biológicos , Fenótipo , Células Fotorreceptoras de Invertebrados/embriologia , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt
18.
Mech Dev ; 121(12): 1469-79, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15511639

RESUMO

Ets transcription factors play crucial roles in regulating diverse cellular processes including cell proliferation, differentiation and survival. Coordinated regulation of the Drosophila Ets transcription factors YAN and POINTED is required for eliciting appropriate responses to Receptor Tyrosine Kinase (RTK) signaling. YAN, a transcriptional repressor, and POINTED, a transcriptional activator, compete for regulatory regions of common target genes, with the ultimate outcome likely influenced by context-specific interactions with binding partners such as MAE. Previous work in cultured cells has led us to propose that MAE attenuates the transcriptional activity of both YAN and POINTED, although its effects on POINTED remain controversial. Here we describe a new layer of complexity to this regulatory hierarchy whereby mae expression is itself directly regulated by the opposing action of YAN and POINTED. In addition, we report that MAE can antagonize POINTED function during eye development; a finding that suggests MAE operates as a dual positive and negative regulator of RTK-mediated signaling in vivo. Together our results lead us to propose that a combination of protein-protein and transcriptional interactions between MAE, YAN and POINTED establishes a complex regulatory circuit that ensures that both down-regulation and activation of the RTK pathway occur appropriately according to specific developmental context.


Assuntos
Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Proteínas do Olho/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases/metabolismo , Receptores de Peptídeos de Invertebrados/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Ligação a DNA/metabolismo , Olho/embriologia , Olho/metabolismo , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo
19.
Dev Dyn ; 229(1): 162-75, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14699588

RESUMO

The Drosophila eye is a highly ordered epithelial tissue composed of approximately 750 subunits called ommatidia arranged in a reiterated hexagonal pattern. At higher resolution, observation of the constituent photoreceptors, cone cells, and pigment cells of the eye reveals a highly ordered mosaic of amazing regularity. This relatively simple organization belies the repeated requirement for spatially and temporally coordinated inputs from the Hedgehog (Hh), Wingless (Wg), Decapentaplegic (Dpp), JAK-STAT, Notch, and receptor tyrosine kinase (RTK) signaling pathways. This review will discuss how signaling inputs from the Notch and RTK pathways, superimposed on the developmental history of a cell, facilitate context-specific and appropriate cell fate specification decisions in the developing fly eye. Lessons learned from investigating the combinatorial signal integration strategies underlying Drosophila eye development will likely reveal cell-cell communication paradigms relevant to many aspects of invertebrate and mammalian development. Developmental Dynamics 229:162-175, 2004.


Assuntos
Drosophila/crescimento & desenvolvimento , Olho/crescimento & desenvolvimento , Fatores de Transcrição , Animais , Drosophila/genética , Drosophila/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Receptores ErbB/genética , Receptores ErbB/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Modelos Biológicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Células Fotorreceptoras de Invertebrados/crescimento & desenvolvimento , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/fisiologia , Receptores Notch , Transdução de Sinais
20.
Development ; 130(14): 3125-35, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12783785

RESUMO

Wingless directs many developmental processes in Drosophila by regulating expression of specific target genes through a conserved signaling pathway. Although many nuclear factors have been implicated in mediating Wingless-induced transcription, the mechanism of how Wingless regulates different targets in different tissues remains poorly understood. We report here that the split ends gene is required for Wingless signaling in the eye, wing and leg imaginal discs. Expression of a dominant-negative version of split ends resulted in more dramatic reductions in Wingless signaling than split ends-null alleles, suggesting that it may have a redundant partner. However, removal of split ends or expression of the dominant-negative had no effect on several Wingless signaling readouts in the embryo. The expression pattern of Split ends cannot explain this tissue-specific requirement, as the protein is predominantly nuclear and present throughout embryogenesis and larval tissues. Consistent with its nuclear location, the split ends dominant-negative acts downstream of Armadillo stabilization. Our data indicate that Split ends is an important positive regulator of Wingless signaling in larval tissues. However, it has no detectable role in the embryonic Wingless pathway, suggesting that it is a tissue or promoter-specific factor.


Assuntos
Proteínas de Drosophila/biossíntese , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/biossíntese , Transdução de Sinais , Alelos , Animais , Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Genes Dominantes , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Mutação , Fenótipo , Células Fotorreceptoras de Invertebrados/patologia , Células Fotorreceptoras de Invertebrados/ultraestrutura , Proteínas Proto-Oncogênicas/genética , Proteínas de Ligação a RNA , Proteína Wnt1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA