Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10867, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740863

RESUMO

Chronic psychosocial stress induced by the chronic subordinate colony housing (CSC, 19 Days) paradigm promotes functional splenic in vitro glucocorticoid (GC) resistance, but only if associated with significant bite wounding or prior abdominal transmitter implantation. Moreover, sensory contact to social defeat of conspecifics represents a social stressor for the observer individual. As the occurence and severity of bite wounding is not adequately controllable, the present study aimed to develop an animal model, allowing a bite wound-independent, more reliable generation of chronically-stressed mice characterized by functional splenic in vitro GC resistance. Therefore, male C57BL/6N mice received a standardized sterile intraperitoneal (i.p.) incision surgery or SHAM treatment one week prior to 19-days of (i) CSC, (ii) witnessing social defeat during CSC exposure in sensory contact (SENS) or (iii) single-housing for control (SHC), before assessing basal and LPS-induced splenic in vitro cell viability and GC resistance. Our results indicate that individually-housed SENS but not CSC mice develop mild signs of splenic in vitro GC resistance, when undergoing prior i.p.-wounding. Taken together and considering that future studies are warranted, our findings support the hypothesis that the combination of repeated standardized i.p.-wounding with chronic sensory stress exposure represents an adequate tool to induce functional splenic in vitro GC resistance independent of the occurrence of uncontrollable bite wounds required in social stress paradigms to induce a comparable phenotype.


Assuntos
Glucocorticoides , Camundongos Endogâmicos C57BL , Baço , Estresse Psicológico , Animais , Masculino , Baço/metabolismo , Camundongos , Modelos Animais de Doenças , Derrota Social
2.
Sci Rep ; 13(1): 9496, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308487

RESUMO

Ex vivo culturing of isolated PBMCs from individuals vaccinated with the coronavirus disease 2019 (COVID-19) vaccine BNT162b1 revealed a pronounced T cell response in the presence of the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. The latter was 10-fold more pronounced than the ex vivo response of PBMCs from the same individuals to other common pathogen T cell epitope pools, suggesting COVID-19 vaccination to induce RBD-specific T cell responses and not to facilitate T cell (re)activity in general. In the current study we investigated whether COVID-19 vaccination long-lastingly affects plasma interleukin (IL)-6 concentrations, complete blood counts, ex vivo IL-6 and IL-10 secretion of PBMCs cultured under basal conditions or in the presence of concanavalin (Con) A and lipopolysaccharide (LPS), salivary cortisol and α-amylase, mean arterial pressure (MAP), heart rate (HR) as well as mental and physical health status. The study was initially designed to investigate whether the presence vs. absence of own pets during urban upbringing has protective effects against psychosocial stress-induced immune activation during adulthood. However, as COVID-19 vaccines were approved while the study was ongoing and as, therefore, both vaccinated and non-vaccinated individuals have been recruited, we were able to stratify our data set with respect to the COVID-19 vaccination status and to assess the long-lasting effects of COVID-19 vaccination on physiological immunological, cardiovascular and psychosomatic health parameters. This data is presented in the current study. We show that isolated PBMCs from individuals vaccinated against COVID-19 show a ~ 600-fold increase in basal and a ~ 6000-fold increase in ConA-induced proinflammatory IL-6 secretion, and a ~ 2-fold increase in basal and ConA-induced antiinflammatory IL-10 secretion, both in comparison with non-vaccinated individuals. In contrast, LPS-induced ex vivo IL-6 and IL-10 secretions were not affected by vaccination status, as were plasma IL-6 concentrations, complete blood counts, salivary cortisol and α-amylase, cardiovascular measures and psychosomatic health. In summary, our findings are of relevance for many clinical studies ran before/during the pandemic, clearly indicating that consideration of participants' vaccination status is critical, at least when assessing ex vivo PBMC functionality.


Assuntos
COVID-19 , Humanos , Adulto , Vacinas contra COVID-19 , SARS-CoV-2 , Interleucina-6 , Vacina BNT162 , Hidrocortisona , Interleucina-10 , Leucócitos Mononucleares , Lipopolissacarídeos , Concanavalina A
3.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982250

RESUMO

Inflammatory conditions, including allergic asthma and conditions in which chronic low-grade inflammation is a risk factor, such as stress-related psychiatric disorders, are prevalent and are a significant cause of disability worldwide. Novel approaches for the prevention and treatment of these disorders are needed. One approach is the use of immunoregulatory microorganisms, such as Mycobacterium vaccae NCTC 11659, which have anti-inflammatory, immunoregulatory, and stress-resilience properties. However, little is known about how M. vaccae NCTC 11659 affects specific immune cell targets, including monocytes, which can traffic to peripheral organs and the central nervous system and differentiate into monocyte-derived macrophages that, in turn, can drive inflammation and neuroinflammation. In this study, we investigated the effects of M. vaccae NCTC 11659 and subsequent lipopolysaccharide (LPS) challenge on gene expression in human monocyte-derived macrophages. THP-1 monocytes were differentiated into macrophages, exposed to M. vaccae NCTC 11659 (0, 10, 30, 100, 300 µg/mL), then, 24 h later, challenged with LPS (0, 0.5, 2.5, 250 ng/mL), and assessed for gene expression 24 h following challenge with LPS. Exposure to M. vaccae NCTC 11659 prior to challenge with higher concentrations of LPS (250 ng/mL) polarized human monocyte-derived macrophages with decreased IL12A, IL12B, and IL23A expression relative to IL10 and TGFB1 mRNA expression. These data identify human monocyte-derived macrophages as a direct target of M. vaccae NCTC 11659 and support the development of M. vaccae NCTC 11659 as a potential intervention to prevent stress-induced inflammation and neuroinflammation implicated in the etiology and pathophysiology of inflammatory conditions and stress-related psychiatric disorders.


Assuntos
Lipopolissacarídeos , Mycobacterium , Humanos , Lipopolissacarídeos/farmacologia , Doenças Neuroinflamatórias , Inflamação , Macrófagos
4.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38203645

RESUMO

Previous studies have shown that the in vivo administration of soil-derived bacteria with anti-inflammatory and immunoregulatory properties, such as Mycobacterium vaccae NCTC 11659, can prevent a stress-induced shift toward an inflammatory M1 microglial immunophenotype and microglial priming in the central nervous system (CNS). It remains unclear whether M. vaccae NCTC 11659 can act directly on microglia to mediate these effects. This study was designed to determine the effects of M. vaccae NCTC 11659 on the polarization of naïve BV-2 cells, a murine microglial cell line, and BV-2 cells subsequently challenged with lipopolysaccharide (LPS). Briefly, murine BV-2 cells were exposed to 100 µg/mL whole-cell, heat-killed M. vaccae NCTC 11659 or sterile borate-buffered saline (BBS) vehicle, followed, 24 h later, by exposure to 0.250 µg/mL LPS (Escherichia coli 0111: B4; n = 3) in cell culture media vehicle (CMV) or a CMV control condition. Twenty-four hours after the LPS or CMV challenge, cells were harvested to isolate total RNA. An analysis using the NanoString platform revealed that, by itself, M. vaccae NCTC 11659 had an "adjuvant-like" effect, while exposure to LPS increased the expression of mRNAs encoding proinflammatory cytokines, chemokine ligands, the C3 component of complement, and components of inflammasome signaling such as Nlrp3. Among LPS-challenged cells, M. vaccae NCTC 11659 had limited effects on differential gene expression using a threshold of 1.5-fold change. A subset of genes was assessed using real-time reverse transcription polymerase chain reaction (real-time RT-PCR), including Arg1, Ccl2, Il1b, Il6, Nlrp3, and Tnf. Based on the analysis using real-time RT-PCR, M. vaccae NCTC 11659 by itself again induced "adjuvant-like" effects, increasing the expression of Il1b, Il6, and Tnf while decreasing the expression of Arg1. LPS by itself increased the expression of Ccl2, Il1b, Il6, Nlrp3, and Tnf while decreasing the expression of Arg1. Among LPS-challenged cells, M. vaccae NCTC 11659 enhanced LPS-induced increases in the expression of Nlrp3 and Tnf, consistent with microglial priming. In contrast, among LPS-challenged cells, although M. vaccae NCTC 11659 did not fully prevent the effects of LPS relative to vehicle-treated control conditions, it increased Arg1 mRNA expression, suggesting that M. vaccae NCTC 11659 induces an atypical microglial phenotype. Thus, M. vaccae NCTC 11659 acutely (within 48 h) induced immune-activating and microglial-priming effects when applied directly to murine BV-2 microglial cells, in contrast to its long-term anti-inflammatory and immunoregulatory effects observed on the CNS when whole-cell, heat-killed preparations of M. vaccae NCTC 11659 were given peripherally in vivo.


Assuntos
Infecções por Citomegalovirus , Microglia , Mycobacteriaceae , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Interleucina-6 , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Anti-Inflamatórios
5.
Front Endocrinol (Lausanne) ; 13: 997745, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187089

RESUMO

Catecholamine signaling is known to influence bone tissue as reuptake of norepinephrine released from sympathetic nerves into bone cells declines with age leading to osteoporosis. Further, ß-adrenoceptor-blockers like propranolol provoke osteoprotective effects in osteoporotic patients. However, besides systemic adrenal and sympathetic catecholamine production, it is also known that myeloid cells can synthesize catecholamines, especially under inflammatory conditions. To investigate the effects of catecholamines produced by CD11b+ myeloid cells on bone turnover and regeneration, a mouse line with specific knockout of tyrosine hydroxylase, the rate-limiting enzyme of catecholamine synthesis, in CD11b+ myeloid cells (THflox/flox/CD11b-Cre+, referred to as THCD11b-Cre) was generated. For bone phenotyping, male mice were sacrificed at eight and twelve weeks of age and harvested bones were subjected to bone length measurement, micro-computed tomography, fluorescence-activated cell sorting of the bone marrow, gene expression analysis, histology and immunohistochemistry. Support for an age-dependent influence of myeloid cell-derived catecholamines on bone homeostasis is provided by the fact that twelve-week-old, but not eight-week-old THCD11b-Cre mice, developed an osteopenic phenotype and showed increased numbers of neutrophils and T lymphocytes in the bone marrow, while CCL2, IL-6, IL-4 and IL-10 mRNA expression was reduced in sorted myeloid bone marrow cells. To investigate the influence of myeloid cell-derived catecholamines on fracture healing, mice received a diaphyseal femur osteotomy. Three days post-fracture, immunohistochemistry revealed an increased number of macrophages, neutrophils and cytotoxic T lymphocytes in the fracture hematoma of THCD11b-Cre mice. Micro-computed tomography on day 21 showed a decreased tissue mineral density, a reduced bone volume and less trabeculae in the fracture callus indicating delayed fracture healing, probably due to the increased presence of inflammatory cells in THCD11b-Cre mice. This indicates a crucial role of myeloid cell-derived catecholamines in immune cell-bone cell crosstalk and during fracture healing.


Assuntos
Catecolaminas , Fraturas Ósseas , Animais , Remodelação Óssea , Calo Ósseo/metabolismo , Calo Ósseo/patologia , Catecolaminas/metabolismo , Fraturas Ósseas/metabolismo , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Interleucina-6 , Macrófagos , Masculino , Camundongos , Norepinefrina , Propranolol , RNA Mensageiro/metabolismo , Receptores Adrenérgicos/metabolismo , Tirosina 3-Mono-Oxigenase , Microtomografia por Raio-X
6.
Sci Rep ; 10(1): 6917, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332802

RESUMO

There is convincing evidence from different mouse models that chronic psychosocial stress promotes splenomegaly, basal and lipopolysaccharide (LPS)-induced in vitro splenocyte activation and insensitivity towards glucocorticoids (GC) in in vitro LPS-treated splenocytes. However, we just recently showed, employing the chronic subordinate colony housing (CSC) paradigm, that bite wounds received during stressor exposure drive these stress-induced spleen changes. As skin wounds induced by planned surgery or physical trauma are more adequately reflecting what chronically stressed humans are likely to experience, it was the objective of the present study to investigate whether abdominal surgery prior to stressor exposure also promotes respective stress-induced spleen effects in the absence of any bite wounds. In line with our hypothesis, abdominal surgery prior to CSC induced splenomegaly, increased in vitro cell viability under basal and LPS conditions as well as the delta response to LPS (LPS - basal), and promoted the inability of isolated splenocytes to respond with a decreased cell viability to increasing concentrations of corticosterone following LPS-stimulation in vitro. Together with previous data, these findings demonstrate that physical injury, either in form of received bite wounds during stressor exposure or in form of abdominal surgery prior to stressor exposure, promotes the development of splenic immune activation and GC resistance.


Assuntos
Abdome/cirurgia , Glucocorticoides/farmacologia , Baço/patologia , Estresse Psicológico/complicações , Animais , Doença Crônica , Abrigo para Animais , Masculino , Camundongos Endogâmicos C57BL , Esplenomegalia/complicações
7.
Neurosci Biobehav Rev ; 113: 169-178, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32109454

RESUMO

It has been extensively studied in several mouse models how chronic, in particular chronic psychosocial, stressors facilitate the (re)activity of the innate immune system and, consequently, drive stress-associated pathologies. Here we first summarize the resulting concept and underlying mechanisms, proposing that social stress-induced bone marrow myelopoiesis, priming, emigration and activation of newly formed myeloid cells and accumulation of these cells in the spleen, gut, brain and fracture hematoma promote septic shock, colitis, anxiety and disturbed fracture healing, respectively. We further propose and discuss the hypothesis that it is not the social character of a particular stressor that promotes splenic invasion and subsequent full activation of stress-induced myeloid cells, but rather the occurrence of bite wounds as a result of direct physical interaction. Finally, we discuss the hypothesis that it is the combination of chronic stress, regardless of whether social or non-social in nature, and any kind of planned (i.e. surgery) or unplanned (i.e. bite wounds, injury) physical trauma that drives splenic invasion and subsequent full activation of stress-induced myeloid cells.


Assuntos
Ansiedade , Estresse Psicológico , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Baço
8.
Front Psychiatry ; 9: 496, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386262

RESUMO

Chronic psychosocial stress adversely affects human morbidity and is a risk factor for inflammatory disorders, liver diseases, obesity, metabolic syndrome, and major depressive disorder (MDD). In recent studies, we found an association of MDD with an increase of acid sphingomyelinase (ASM) activity. Thus, we asked whether chronic psychosocial stress as a detrimental factor contributing to the emergence of MDD would also affect ASM activity and sphingolipid (SL) metabolism. To induce chronic psychosocial stress in male mice we employed the chronic subordinate colony housing (CSC) paradigm and compared them to non-stressed single housed control (SHC) mice. We determined Asm activity in liver and serum, hepatic SL concentrations as well as hepatic mRNA expression of genes involved in SL metabolism. We found that hepatic Asm activity was increased by 28% (P = 0.006) and secretory Asm activity by 47% (P = 0.002) in stressed mice. C16:0-Cer was increased by 40% (P = 0.008). Gene expression analysis further revealed an increased expression of tumor necrosis factor (TNF)-α (P = 0.009) and of several genes involved in SL metabolism (Cers5, P = 0.028; Cers6, P = 0.045; Gba, P = 0.049; Gba2, P = 0.030; Ormdl2, P = 0.034; Smpdl3B; P = 0.013). Our data thus provides first evidence that chronic psychosocial stress, at least in mice, induces alterations in SL metabolism, which in turn might be involved in mediating the adverse health effects of chronic psychosocial stress and peripheral changes occurring in mood disorders.

9.
J Clin Invest ; 128(11): 5056-5072, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30320600

RESUMO

Dysregulated intestinal epithelial apoptosis initiates gut injury, alters the intestinal barrier, and can facilitate bacterial translocation leading to a systemic inflammatory response syndrome (SIRS) and/or multi-organ dysfunction syndrome (MODS). A variety of gastrointestinal disorders, including inflammatory bowel disease, have been linked to intestinal apoptosis. Similarly, intestinal hyperpermeability and gut failure occur in critically ill patients, putting the gut at the center of SIRS pathology. Regulation of apoptosis and immune-modulatory functions have been ascribed to Thirty-eight-negative kinase 1 (TNK1), whose activity is regulated merely by expression. We investigated the effect of TNK1 on intestinal integrity and its role in MODS. TNK1 expression induced crypt-specific apoptosis, leading to bacterial translocation, subsequent septic shock, and early death. Mechanistically, TNK1 expression in vivo resulted in STAT3 phosphorylation, nuclear translocation of p65, and release of IL-6 and TNF-α. A TNF-α neutralizing antibody partially blocked development of intestinal damage. Conversely, gut-specific deletion of TNK1 protected the intestinal mucosa from experimental colitis and prevented cytokine release in the gut. Finally, TNK1 was found to be deregulated in the gut in murine and porcine trauma models and human inflammatory bowel disease. Thus, TNK1 might be a target during MODS to prevent damage in several organs, notably the gut.


Assuntos
Proteínas Fetais/metabolismo , Doenças Inflamatórias Intestinais/enzimologia , Intestinos/enzimologia , Insuficiência de Múltiplos Órgãos/enzimologia , Traumatismo Múltiplo/enzimologia , Proteínas Tirosina Quinases/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/enzimologia , Animais , Modelos Animais de Doenças , Feminino , Proteínas Fetais/genética , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Interleucina-6/genética , Interleucina-6/metabolismo , Intestinos/patologia , Camundongos , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/genética , Insuficiência de Múltiplos Órgãos/patologia , Traumatismo Múltiplo/complicações , Traumatismo Múltiplo/genética , Traumatismo Múltiplo/patologia , Proteínas Tirosina Quinases/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Suínos , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
10.
PLoS One ; 11(7): e0159059, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27391954

RESUMO

To study the impact of psychosocial stress on the immune system, male mice were subjected to chronic subordinate colony housing (CSC), a preclinically validated mouse model for chronic psychosocial stress. CSC substantially affected the cell composition of the bone marrow, blood, and spleen by inducing myelopoiesis and enhancing the frequency of regulatory T cells in the CD4 population. Expansion of the myeloid cell compartment was due to cells identified as immature inflammatory myeloid cells having the phenotype of myeloid-derived suppressor cells of either the granulocytic or the monocytic type. Catecholaminergic as well as TNF signaling were implicated in these CSC-induced cellular shifts. Although the frequency of regulatory cells was enhanced following CSC, the high capacity for inflammatory cytokine secretion of total splenocytes indicated an inflammatory immune status in CSC mice. Furthermore, CSC enhanced the suppressive activity of bone marrow-derived myeloid-derived suppressor cells towards proliferating T cells. In line with the occurrence of suppressor cell types such as regulatory T cells and myeloid-derived suppressor cells, transplanted syngeneic fibrosarcoma cells grew better in CSC mice than in controls, a process accompanied by pronounced angiogenesis and clustering of immature myeloid cells in the tumor tissue. In addition, tumor implantation after CSC reinforced the CSC-induced increase in myeloid-derived suppressor cells and regulatory T cell frequencies while the CSC-induced cellular changes eased off in mice without tumor. Together, our data suggest a role for suppressor cells such as regulatory T cells and myeloid-derived suppressor cells in the enhanced tumor growth after chronic psychosocial stress.


Assuntos
Células Mieloides/citologia , Células Mieloides/metabolismo , Estresse Psicológico/fisiopatologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Catecolaminas/metabolismo , Citometria de Fluxo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Exp Neurol ; 252: 28-36, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24269865

RESUMO

Apoptotic death of photoreceptors in hereditary retinal degenerations can be prevented by neuroprotective molecules. Here, we report that adrenal glucocorticoids (GC) released during psychosocial stress protect photoreceptors from apoptosis after light damage. Psychosocial stress is known to be the main type of stressor humans are exposed to and was induced here in mice by 10h of chronic subordinate colony housing (CSC). Photoreceptor damage was generated by subsequent exposure to white light. Short-term psychosocial stress prior to illumination significantly reduced the number of apoptotic photoreceptors, an effect that was absent in adrenalectomized (ADX) mice. The neuroprotective effect was completely restored in ADX mice substituted with GC. Moreover, phosphorylation of retinal AKT increased following CSC or exogenous GC treatment, an effect that was again absent in ADX mice exposed to CSC. Finally, inhibition of AKT signaling with triciribine blocked the stress- and GC-mediated neuroprotective effects on photoreceptors. In summary, we provide evidence that 1) short-term psychosocial stress protects photoreceptors from light-induced damage and 2) the protective effect is most likely mediated by GC-induced activation of the AKT signaling pathway.


Assuntos
Anti-Inflamatórios/uso terapêutico , Corticosterona/uso terapêutico , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Degeneração Retiniana/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/patologia , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Endotelina-2/genética , Endotelina-2/metabolismo , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Luz/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Degeneração Retiniana/etiologia , Ribonucleosídeos/farmacologia , Estresse Psicológico/complicações , Fatores de Tempo
12.
Stress ; 15(6): 618-26, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22251167

RESUMO

A commonly used method for obtaining blood samples from mice is decapitation. However, there is an obvious need for repeated blood sampling in mice under stress-free conditions. Here, we describe a simple technique to repeatedly collect blood samples from conscious, freely moving mice through a chronically implanted jugular vein catheter. Furthermore, we compare plasma corticosterone (CORT) concentrations in samples obtained through the catheter 1 day after surgery with samples taken from trunk blood obtained under basal or acute stress conditions. CORT concentrations in repeated 100-µl venous blood samples were found to be similar to trunk blood samples both under basal conditions and after stressor exposure collected at identical time points (at 5, 15, and 60 min). Using both techniques, we demonstrate a progressive increase in CORT levels until 15 min after termination of stressor exposure and a decrease towards baseline values 60 min later. Anxiety-related behavior, as assessed on the elevated plus maze 3-4 days after surgery, did not differ between catheterized and non-catheterized mice. Our results provide evidence for application of jugular vein catheterization as a technique for repeated blood sampling in conscious laboratory mice. Use of this technique will greatly reduce the number of animals required for experiments involving endocrine endpoints.


Assuntos
Coleta de Amostras Sanguíneas/veterinária , Cateterismo Venoso Central/veterinária , Corticosterona/sangue , Veias Jugulares , Animais , Ansiedade/fisiopatologia , Coleta de Amostras Sanguíneas/métodos , Masculino , Camundongos , Estresse Fisiológico
13.
Stress ; 15(4): 403-15, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22044139

RESUMO

Patients with inflammatory bowel diseases (IBDs) have a higher risk of developing colorectal cancer (CRC) than the general population. Furthermore, chronic psychosocial stress increases the likelihood of developing IBD and multiple types of malignant neoplasms, including CRC. Here, for the first time, we investigate the effects of chronic psychosocial stress in male mice on an artificially induced CRC, by employing the chronic subordinate colony (CSC) housing paradigm in combination with the reliable azoxymethane (AOM)/dextran sodium sulfate (DSS) CRC model. Colonoscopy revealed that CSC mice showed accelerated macroscopic suspect lesions. In addition, more CSC mice developed low-grade dysplasia (LGD) and/or high-grade dysplasia (HGD) in the colonic tissue compared to the single-housed control mice (SHC). CSC mice showed an increased number of Ki67+ and a decreased number of terminal deoxynucleotidyl transferase dUTP nick end labeling epithelial cells in colonic tissue. Colonic liver receptor homolog-1 (LRH-1), cyclooxygenase II (COXII), tumor necrosis factor, forkhead box P3 (FoxP3) mRNA as well as colonic ß-catenin, COXII, and LRH-1 protein expression were also increased in CSC compared with SHC mice. Although the number of CD4+ Th cells was increased, a tendency toward a decreased colonic interferon-γ (IFN-γ) mRNA expression was observed. Furthermore, despite an increased percentage of CD3+ cells and CD3+/FoxP3+ double-positive cells within mesenteric lymph node cells of CSC mice, IFN-γ secretion from these cells was unaffected. Altogether, our results suggest that chronic psychosocial stress increases the risk for AOM/DSS-induced and, thus, inflammation-related CRC. Finally, assessment of additional time points may test whether the shift from tumor-protective Th1 cell to regulatory T-cell immunity represents a consequence of increased carcinogenesis or a causal factor involved in its development.


Assuntos
Neoplasias do Colo/induzido quimicamente , Estresse Psicológico/complicações , Animais , Azoximetano , Colite/induzido quimicamente , Colite/patologia , Colo/patologia , Neoplasias Colorretais/induzido quimicamente , Ciclo-Oxigenase 2/metabolismo , Sulfato de Dextrana , Abrigo para Animais , Inflamação/induzido quimicamente , Interferon gama , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Predomínio Social , Estresse Psicológico/fisiopatologia
14.
Brain Behav Immun ; 25(6): 1153-61, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21397685

RESUMO

Chronic psychosocial stress is a risk factor for many affective and somatic disorders, including inflammatory bowel diseases. In support chronic subordinate colony housing (CSC, 19 days), an established mouse model of chronic psychosocial stress, causes the development of spontaneous colitis. However, the mechanisms underlying the development of such stress-induced colitis are poorly understood. Assessing several functional levels of the colon during the initial stress phase, we show a pronounced adrenal hormone-mediated local immune suppression, paralleled by impaired intestinal barrier functions, resulting in enhanced bacterial load in stool and colonic tissue. Moreover, prolonged treatment with broad-spectrum antibiotics revealed the causal role of these early maladaptations in the development of stress-induced colitis. Together, we demonstrate that translocation of commensal bacteria is crucial in the initiation of stress-induced colonic inflammation. However, aggravation by the immune-modulatory effects of fluctuating levels of adrenal hormones is required to develop this into a full-blown colitis.


Assuntos
Translocação Bacteriana , Colite/etiologia , Tolerância Imunológica , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Estresse Psicológico/imunologia , Adrenalectomia , Animais , Antibacterianos/uso terapêutico , Apoptose , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Colite/imunologia , Colite/microbiologia , Colite/patologia , Colo/microbiologia , Corticosterona/sangue , Corticosterona/metabolismo , Células Epiteliais/patologia , Fezes/microbiologia , Mucosa Intestinal/microbiologia , Linfonodos/microbiologia , Masculino , Mesentério , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade , Predomínio Social , Estresse Psicológico/complicações , Estresse Psicológico/fisiopatologia , Territorialidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA