Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 31(12): 119, 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33247781

RESUMO

BACKGROUND: Dysfunction of blood vessel leads to aneurysms, myocardial infarction and other thrombosis conditions. Current treatment strategies are transplantation of blood vessels from one part of the body to other dysfunction area, or allogenic, synthetic. Due to shortage of the donor, painful dissection, and lack of efficacy in synthetic, there is a need for alternative to native blood vessels for transplantation. METHODS: Human umbilical-cord tissue obtained from the hospital with the informed consent. Umbilical-cord blood vessels were isolated for decellularization and to establish endothelial cell culture. Cultured cells were characterized by immunophenotype, gene expression and in vitro angiogenesis assay. Decellularized blood vessels were recellularized with the endothelial progenitors and Wharton jelly, CL MSCs (1:1), which was characterized by MTT, biomechanical testing, DNA content, SEM and histologically. Bioengineered vessels were transplanted into the animal models to evaluate their effect. RESULTS: Cultured cells express CD31 and CD14 determining endothelial progenitor cells (EPCs). EPCs expresses various factors such as angiopoitin1, VWF, RANTES, VEGF, BDNF, FGF1, FGF2, HGF, IGF, GDNF, NGF, PLGF, NT3, but fail to express NT4, EGF, and CNTF. Pro and anti-inflammatory cytokine expressions were noticed. Functionally, these EPCs elicit in vitro tube formation. Negligible DNA content and intact ECM confirms the efficient decellularization of tissue. The increased MTT activity in recellularized tissue determines proliferating cells and biocompatibility of the scaffolds. Moreover, significant (P < 0.05) increase in maximum force and tensile of recellularized biomaterial as compared to the decellularized scaffolds. Integration of graft with host tissue, suggesting biocompatible therapeutic biomaterial with cells. CONCLUSION: EPCs with stem cells in engineered blood vessels could be therapeutically applicable in vascular surgery.


Assuntos
Prótese Vascular , Técnicas de Cultura de Células/métodos , Células Progenitoras Endoteliais/citologia , Animais , Fenômenos Biomecânicos/fisiologia , Células Cultivadas , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Células Progenitoras Endoteliais/fisiologia , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Ratos , Ratos Wistar
2.
ACS Appl Bio Mater ; 3(2): 1233-1244, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35019324

RESUMO

The leaching out of toxic elements from metallic bioimplants has serious repercussions, including allergies, peripheral neuritis, cancer, and Alzheimer's disease, leading to revision or replacement surgeries. The development of advanced structural materials with excellent biocompatibility and superior corrosion resistance in the physiological environment holds great significance. High entropy alloys (HEAs) with a huge compositional design space and outstanding mechanical and functional properties can be promising for bioimplant applications. However, microstructural heterogeneity arising from elemental segregation in these multiprinciple alloy systems is the Achilles heel in the development of next-generation HEAs. Here, we demonstrate a pathway to homogenize the microstructure of a biocompatible dual-phase HEA, comprising refractory elements, namely, MoNbTaTiZr, through severe surface deformation using stationary friction processing (SFP). The strain and temperature field during processing homogenized the elemental distribution, which was otherwise unresponsive to conventional annealing treatments. Nearly 15 min of the SFP treatment resulted in a significant elemental homogenization across dendritic and interdendritic regions, similar to a week-long annealing treatment at 1275 K. The SFP processed alloy showed a nearly six times higher biocorrosion resistance compared to its as-cast counterpart. X-ray photoelectron spectroscopy was used to investigate the nature of the oxide layer formed on the specimens. Superior corrosion behavior of the processed alloy was attributed to the formation of a stable passive layer with zirconium oxide as the primary constituent and higher hydrophobicity. Biocompatibility studies performed using the human mesenchymal stem cell line, showed higher viability for the processed HEA compared to its as-cast counterpart as well as conventional metallic biomaterials including stainless steel (SS316L) and titanium alloy (Ti6Al4V).

3.
Life Sci ; 191: 195-204, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29054455

RESUMO

AIM: Nutritional deprivation and inflammation-rich zones are the major causative reasons for poor survivability of transplanted mesenchymal stem cells (MSCs). Therefore in the present study, we demonstrated the cytoprotective and anti-inflammatory effects of activated delta (δ)-opioid receptor (DOR) with synthetic peptide [D-Ala2, D-Leu5]-enkephalin (DADLE) treatment on human MSCs cultured in serum-starved condition. MAIN METHODS: Cell viability was measured using MTT and Annexin V/PI assays. Expressions of pro-apoptotic (Bcl2) and anti-apoptotic genes (Bax/Bad), levels of activated p44/42 MAPK, Akt, PI3-kinase-p110γ and cleaved caspase-3 were determined by qPCR and western blot. Levels of secreted cytokines were measured by ELISA. KEY FINDINGS: In comparison to the control, DADLE significantly increased cell survivability under serum deprived condition as confirmed by MTT (71% vs 45%) and Annexin V/PI assays (25.9% vs 3.7%). Significant up-regulation of pro-apoptotic Bcl2 (~2.1 folds), down-regulations of anti-apoptotic Bax/Bad (~2.6/2.7 folds) as well as of cleaved caspase-3, increased expression of PI3kinase subunit p110γ and activation of Akt (Ser473) were observed following DADLE treatment in cells under 'serum deprivation' stress. In addition, DADLE treated hMSCs secreted increased levels of anti-inflammatory cytokines (IL10/IL4/TGF-ß) under serum deprived condition. LPS stimulated macrophages showed abated release of pro-inflammatory cytokines (IL1/TNFα/IL6) when grown in hMSC conditioned 'serum deprived' media treated with DADLE. Both the cytoprotective and anti-inflammatory effects of DADLE were inhibited by the DOR specific antagonist naltrindole. SIGNIFICANCE: The DOR signaling pathway improved cell viability and enhanced anti-inflammatory effect of hMSCs subjected to 'serum deprivation' stress that could have potential therapeutic benefits in reparative medicine.


Assuntos
Analgésicos Opioides/farmacologia , Anti-Inflamatórios/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Leucina Encefalina-2-Alanina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular , Citoproteção/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptores Opioides delta/agonistas , Receptores Opioides delta/imunologia
4.
Cell Reprogram ; 19(6): 372-383, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29035086

RESUMO

Although neural stem cells (NSCs) have potential applications in treating neurological disorders, much still needs to be understood about the differentiation biology for their successful clinical translation. In this study, we aimed at deriving NSCs from human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) and explored the role of Notch signaling in the differentiation process. The hUCB-MSCs were characterized as per guidelines of the International Society of Cellular Therapy. NSCs were successfully generated from hUCB-MSCs by using epidermal and fibroblast growth factors under serum-free conditions. The expression of NSC markers (Nestin and Musashi-1) in the neurospheres generated from hUCB-MSCs in the presence or absence of N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT; Notch inhibitor) was immuno-phenotypically characterized by using immunofluorescence. DAPT showed significant (*p < 0.05) downregulated expression of the NSC markers-Nestin and SOX2-at different time points (6 hours, 12 hours, 24 hours, 36 hours, and 5 days) post-treatment. In addition, Mushashi-1 (NSC marker) expression in NSCs was also inhibited after DAPT treatment, which signifies that the process is Notch dependent. These data were further correlated with formation of a reduced average number of neurospheres derived from hUCB-MSCs (2 colonies vs. 11 colonies/field of view) in the presence of DAPT compared with the control (without DAPT). The expression of Notch target genes in NSC cultures (Notch intracellular domain [NICD], HES1, and HES5) was also significantly downregulated after DAPT treatment. In the presence of DAPT, the markers for neuronal (MAP2, NEFH); and glial (GFAP, GLUL, and MBP) lineages were significantly downregulated as seen via immunofluorescence and quantitative polymerase chain reaction, indicating the role of Notch in the tri-differentiation mechanism of NSCs as well. In addition, Notch signaling inhibition induced higher cell death during the lineage commitment of NSCs as measured 3 days (16.9% vs. 8.9%) and 6 days (42.9% vs. 20.8%) postinduction. These results suggest that the efficient derivation of NSCs and their subsequent lineage commitment from hUCB-MSCs requires the Notch signaling pathway.


Assuntos
Autorrenovação Celular/efeitos dos fármacos , Dipeptídeos/farmacologia , Sangue Fetal/citologia , Células-Tronco Neurais/citologia , Receptores Notch/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Sangue Fetal/efeitos dos fármacos , Sangue Fetal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Receptores Notch/genética , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA