Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ArXiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38463509

RESUMO

Ovarian cancer detection has traditionally relied on a multi-step process that includes biopsy, tissue staining, and morphological analysis by experienced pathologists. While widely practiced, this conventional approach suffers from several drawbacks: it is qualitative, time-intensive, and heavily dependent on the quality of staining. Mid-infrared (MIR) hyperspectral photothermal imaging is a label-free, biochemically quantitative technology that, when combined with machine learning algorithms, can eliminate the need for staining and provide quantitative results comparable to traditional histology. However, this technology is slow. This work presents a novel approach to MIR photothermal imaging that enhances its speed by an order of magnitude. Our method significantly accelerates data collection by capturing a combination of highresolution and interleaved, lower-resolution infrared band images and applying computational techniques for data interpolation. We effectively minimize data collection requirements by leveraging sparse data acquisition and employing curvelet-based reconstruction algorithms. This approach enhances imaging speed without compromising image quality and ensures robust tissue segmentation. This method resolves the longstanding trade-off between imaging resolution and data collection speed, enabling the reconstruction of high-quality, high-resolution images from undersampled datasets and achieving a 10X improvement in data acquisition time. We assessed the performance of our sparse imaging methodology using a variety of quantitative metrics, including mean squared error (MSE), structural similarity index (SSIM), and tissue subtype classification accuracies, employing both random forest and convolutional neural network (CNN) models, accompanied by Receiver Operating Characteristic (ROC) curves. Our statistically robust analysis, based on data from 100 ovarian cancer patient samples and over 65 million data points, demonstrates the method's capability to produce superior image quality and accurately distinguish between different gynecological tissue types with segmentation accuracy exceeding 95%. Our work demonstrates the feasibility of integrating rapid MIR hyperspectral photothermal imaging with machine learning in enhancing ovarian cancer tissue characterization, paving the way for quantitative, label-free, automated histopathology. It represents a significant leap forward from traditional histopathological methods, offering profound implications for cancer diagnostics and treatment decision-making.

2.
Analyst ; 148(12): 2699-2708, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37218522

RESUMO

Mid-infrared spectroscopic imaging (MIRSI) is an emerging class of label-free techniques being leveraged for digital histopathology. Modern histopathologic identification of ovarian cancer involves tissue staining followed by morphological pattern recognition. This process is time-consuming and subjective and requires extensive expertise. This paper presents the first label-free, quantitative, and automated histological recognition of ovarian tissue subtypes using a new MIRSI technique. This optical photothermal infrared (O-PTIR) imaging technique provides a 10× enhancement in spatial resolution relative to prior instruments. It enables sub-cellular spectroscopic investigation of tissue at biochemically important fingerprint wavelengths. We demonstrate that the enhanced resolution of sub-cellular features, combined with spectroscopic information, enables reliable classification of ovarian cell subtypes achieving a classification accuracy of 0.98. Moreover, we present a statistically robust analysis from 78 patient samples with over 60 million data points. We show that sub-cellular resolution from five wavenumbers is sufficient to outperform state-of-the-art diffraction-limited techniques with up to 235 wavenumbers. We also propose two quantitative biomarkers based on the relative quantities of epithelia and stroma that exhibit efficacy in early cancer diagnosis. This paper demonstrates that combining deep learning with intrinsic biochemical MIRSI measurements enables quantitative evaluation of cancerous tissue, improving the rigor and reproducibility of histopathology.


Assuntos
Aprendizado Profundo , Neoplasias Ovarianas , Humanos , Feminino , Reprodutibilidade dos Testes , Espectrofotometria Infravermelho , Diagnóstico por Imagem , Neoplasias Ovarianas/diagnóstico
3.
Appl Spectrosc ; 76(4): 508-518, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35236126

RESUMO

Collagen quantity and integrity play an important role in understanding diseases such as myelofibrosis (MF). Label-free mid-infrared spectroscopic imaging (MIRSI) has the potential to quantify collagen while minimizing the subjective variance observed with conventional histopathology. Infrared (IR) spectroscopy with polarization sensitivity provides chemical information while also estimating tissue dichroism. This can potentially aid MF grading by revealing the structure and orientation of collagen fibers. Simultaneous measurement of collagen structure and biochemical properties can translate clinically into improved diagnosis and enhance our understanding of disease progression. In this paper, we present the first report of polarization-dependent spectroscopic variations in collagen from human bone marrow samples. We build on prior work with animal models and extend it to human clinical biopsies with a practical method for high-resolution chemical and structural imaging of bone marrow on clinical glass slides. This is done using a new polarization-sensitive photothermal mid-infrared spectroscopic imaging scheme that enables sample and source independent polarization control. This technology provides 0.5 µm spatial resolution, enabling the identification of thin (≈1 µm) collagen fibers that were not separable using Fourier Transform Infrared (FT-IR) imaging in the fingerprint region at diffraction-limited resolution ( ≈ 5 µm). Finally, we propose quantitative metrics to identify fiber orientation from discrete band images (amide I and amide II) measured under three polarizations. Previous studies have used a pair of orthogonal polarization measurements, which is insufficient for clinical samples since human bone biopsies contain collagen fibers with multiple orientations. Here, we address this challenge and demonstrate that three polarization measurements are necessary to resolve orientation ambiguity in clinical bone marrow samples. This is also the first study to demonstrate the ability to spectroscopically identify thin collagen fibers (≈1 µm diameter) and their orientations, which is critical for accurate grading of human bone marrow fibrosis.


Assuntos
Medula Óssea , Colágeno , Amidas , Medula Óssea/diagnóstico por imagem , Colágeno/química , Humanos , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
4.
Clin Gastroenterol Hepatol ; 20(4): 756-765.e3, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33549871

RESUMO

BACKGROUND & AIMS: Tethered capsule endomicroscopy (TCE) involves swallowing a small tethered pill that implements optical coherence tomography (OCT) imaging, procuring high resolution images of the whole esophagus. Here, we demonstrate and evaluate the feasibility and safety of TCE and a portable OCT imaging system in patients with Barrett's esophagus (BE) in a multi-center (5-site) clinical study. METHODS: Untreated patients with BE as per endoscopic biopsy diagnosis were eligible to participate in the study. TCE procedures were performed in unsedated patients by either doctors or nurses. After the capsule was swallowed, the device continuously obtained 10-µm-resolution cross-sectional images as it traversed the esophagus. Following imaging, the device was withdrawn through mouth, and disinfected for subsequent reuse. BE lengths were compared to endoscopy findings when available. OCT-TCE images were compared to volumetric laser endomicroscopy (VLE) images from a patient who had undergone VLE on the same day as TCE. RESULTS: 147 patients with BE were enrolled across all sites. 116 swallowed the capsule (79%), 95/114 (83.3%) men and 21/33 (63.6%) women (P = .01). High-quality OCT images were obtained in 104/111 swallowers (93.7%) who completed the procedure. The average imaging duration was 5.55 ± 1.92 minutes. The mean length of esophagus imaged per patient was 21.69 ± 5.90 cm. A blinded comparison of maximum extent of BE measured by OCT-TCE and EGD showed a strong correlation (r = 0.77-0.79). OCT-TCE images were of similar quality to those obtained by OCT-VLE. CONCLUSIONS: The capabilities of TCE to be used across multiple sites, be administered to unsedated patients by either physicians or nurses who are not expert in OCT-TCE, and to rapidly and safely evaluate the microscopic structure of the esophagus make it an emerging tool for screening and surveillance of BE patients. Clinical trial registry website and trial number: NCT02994693 and NCT03459339.


Assuntos
Esôfago de Barrett , Neoplasias Esofágicas , Esôfago de Barrett/diagnóstico por imagem , Esôfago de Barrett/patologia , Biópsia , Neoplasias Esofágicas/patologia , Esofagoscopia/métodos , Estudos de Viabilidade , Feminino , Humanos , Masculino , Tomografia de Coerência Óptica/métodos
5.
Analyst ; 146(15): 4822-4834, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34198314

RESUMO

Mid-infrared Spectroscopic Imaging (MIRSI) provides spatially-resolved molecular specificity by measuring wavelength-dependent mid-infrared absorbance. Infrared microscopes use large numerical aperture objectives to obtain high-resolution images of heterogeneous samples. However, the optical resolution is fundamentally diffraction-limited, and therefore wavelength-dependent. This significantly limits resolution in infrared microscopy, which relies on long wavelengths (2.5 µm to 12.5 µm) for molecular specificity. The resolution is particularly restrictive in biomedical and materials applications, where molecular information is encoded in the fingerprint region (6 µm to 12 µm), limiting the maximum resolving power to between 3 µm and 6 µm. We present an unsupervised curvelet-based image fusion method that overcomes limitations in spatial resolution by augmenting infrared images with label-free visible microscopy. We demonstrate the effectiveness of this approach by fusing images of breast and ovarian tumor biopsies acquired using both infrared and dark-field microscopy. The proposed fusion algorithm generates a hyperspectral dataset that has both high spatial resolution and good molecular contrast. We validate this technique using multiple standard approaches and through comparisons to super-resolved experimentally measured photothermal spectroscopic images. We also propose a novel comparison method based on tissue classification accuracy.


Assuntos
Algoritmos , Microscopia , Análise de Fourier , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Lasers Surg Med ; 50(3): 230-235, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29105794

RESUMO

BACKGROUND AND OBJECTIVES: Endoscopic optical coherence tomography probes suffer from various artifacts due to dispersion imbalance and polarization mismatch between reference and sample arm light. Such artifacts can be minimized using a common path approach. In this work, we demonstrate a miniaturized common path probe for optical coherence tomography using an inline fiber mirror. MATERIALS AND METHODS: A common path optical fiber probe suitable for performing high-resolution endoscopic optical coherence tomography imaging was developed. To achieve common path functionality, an inline fiber mirror was fabricated using a thin gold layer. A commercially available swept source engine was used to test the designed probe in a cadaver human coronary artery ex vivo. RESULTS: We achieved a sensitivity of 104 dB for this probe using a swept source optical coherence tomography system. To test the probe, images of a cadaver human coronary artery were obtained, demonstrating the quality that is comparable to those obtained by OCT systems with separate reference arms. Additionally, we demonstrate recovery of ranging depth by use of a Michelson interferometer in the detection path. CONCLUSION: We developed a miniaturized monolithic inline fiber mirror-based common path probe for optical coherence tomography. Owing to its simplicity, our design will be helpful in endoscopic applications that require high-resolution probes in a compact form factor while reducing system complexity. Lasers Surg. Med. 50:230-235, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Vasos Coronários/diagnóstico por imagem , Tecnologia de Fibra Óptica , Fibras Ópticas , Tomografia de Coerência Óptica , Cadáver , Desenho de Equipamento , Humanos
7.
Faraday Discuss ; 187: 43-68, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27095431

RESUMO

Breast cancer screening provides sensitive tumor identification, but low specificity implies that a vast majority of biopsies are not ultimately diagnosed as cancer. Automated techniques to evaluate biopsies can prevent errors, reduce pathologist workload and provide objective analysis. Fourier transform infrared (FT-IR) spectroscopic imaging provides both molecular signatures and spatial information that may be applicable for pathology. Here, we utilize both the spectral and spatial information to develop a combined classifier that provides rapid tissue assessment. First, we evaluated the potential of IR imaging to provide a diagnosis using spectral data alone. While highly accurate histologic [epithelium, stroma] recognition could be achieved, the same was not possible for disease [cancer, no-cancer] due to the diversity of spectral signals. Hence, we employed spatial data, developing and evaluating increasingly complex models, to detect cancers. Sub-mm tumors could be very confidently predicted as indicated by the quantitative measurement of accuracy via receiver operating characteristic (ROC) curve analyses. The developed protocol was validated with a small set and statistical performance used to develop a model that predicts study design for a large scale, definitive validation. The results of evaluation on different instruments, at higher noise levels, under a coarser spectral resolution and two sampling modes [transmission and transflection], indicate that the protocol is highly accurate under a variety of conditions. The study paves the way to validating IR imaging for rapid breast tumor detection, its statistical validation and potential directions for optimization of the speed and sampling for clinical deployment.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Analyst ; 135(7): 1569-78, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20498913

RESUMO

Engineered tissues can provide models for imaging and disease progression and the use of such models is becoming increasingly prevalent. While structural characterization of these systems is documented, a combination of biochemical and structural knowledge is often helpful. Here, we apply Fourier transform infrared (FT-IR) spectroscopic imaging to examine an engineered tissue model of melanoma. We first characterize the biochemical properties and spectral changes in different layers of growing skin. Second, we introduce malignant melanocytes to simulate tumor formation and growth. Both cellular changes associated with tumor formation and growth can be observed. In particular, chemical changes associated with tumor-stromal interactions are observed during the course of tumor growth and appear to influence a 50-100 microm region. The development of this analytical approach combining engineered tissue with spectroscopy, imaging and computation will allow for quality control and standardization in tissue engineering and novel scientific insight in cancer progression.


Assuntos
Melanoma/química , Neoplasias Cutâneas/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Engenharia Tecidual , Células Cultivadas , Progressão da Doença , Humanos , Melanoma/patologia , Modelos Biológicos , Pele/patologia , Neoplasias Cutâneas/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA