Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 29(10): 1855-1868, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36520504

RESUMO

Utilizing targeted therapies capable of reducing cancer metastasis, targeting chemoresistant and self-renewing cancer stem cells, and augmenting the efficacy of systemic chemo/radiotherapies is vital to minimize cancer-associated mortality. Targeting nitric oxide synthase (NOS), a protein within the tumor microenvironment, has gained interest as a promising therapeutic strategy to reduce metastatic capacity and augment the efficacy of chemo/radiotherapies in various solid malignancies. Our review highlights the influence of nitric oxide (NO) in tumor progression and cancer metastasis, as well as promising preclinical studies that evaluated NOS inhibitors as anticancer therapies. Lastly, we highlight the prospects and outstanding challenges of using NOS inhibitors in the clinical setting.


Assuntos
Neoplasias , Óxido Nítrico , Humanos , Óxido Nítrico/metabolismo , Neoplasias/tratamento farmacológico , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Microambiente Tumoral
2.
Breast Cancer Res ; 22(1): 121, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148288

RESUMO

Metaplastic breast cancer (MpBC) is an exceedingly rare breast cancer variant that is therapeutically challenging and aggressive. MpBC is defined by the histological presence of at least two cellular types, typically epithelial and mesenchymal components. This variant harbors a triple-negative breast cancer (TNBC) phenotype, yet has a worse prognosis and decreased survival compared to TNBC. There are currently no standardized treatment guidelines specifically for MpBC. However, prior studies have found that MpBC typically has molecular alterations in epithelial-to-mesenchymal transition, amplification of epidermal growth factor receptor, PI3K/Akt signaling, nitric oxide signaling, Wnt/ß-catenin signaling, altered immune response, and cell cycle dysregulation. Some of these molecular alterations have been studied as therapeutic targets, in both the preclinical and clinical setting. This current review discusses the histological organization and cellular origins of MpBC, molecular alterations, the role of radiation therapy, and current clinical trials for MpBC.


Assuntos
Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal , Genes Neoplásicos/genética , Metaplasia/patologia , Neoplasias de Mama Triplo Negativas/patologia , Via de Sinalização Wnt , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Feminino , Humanos , Metaplasia/genética , Metaplasia/metabolismo , Metaplasia/terapia , Terapia de Alvo Molecular/métodos , Óxido Nítrico Sintase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/terapia
3.
Breast J ; 26(9): 1793-1796, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32578306

RESUMO

Metastatic triple-negative breast cancer (mTNBC) patients tend to have a poor overall survival. The primary goals of treatment focus on palliation of symptoms and improvement in overall survival (OS). Single-agent sequential chemotherapy with anthracycline or taxane has remained the cornerstone of treatment for many years. The FDA has approved newer agents such as poly-adenosine diphosphate-ribose polymerase (PARP) inhibitors upfront in germline BRCA (gBRCA) 1/2 mutation carriers; atezolizumab and nab-paclitaxel combination frontline in patients with PD-L1 expression > 1%; and sacituzumab govitecan (IMMU-132), an antibody-drug conjugate in heavily pretreated mTNBC patients.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
4.
Breast Cancer Res ; 22(1): 48, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32414394

RESUMO

BACKGROUND: The human epidermal growth factor receptor (HER) family, notably EGFR, is overexpressed in most triple-negative breast cancer (TNBC) cases and provides cancer cells with compensatory signals that greatly contribute to the survival and development of resistance in response to therapy. This study investigated the effects of Pan-HER (Symphogen, Ballerup, Denmark), a novel mixture of six monoclonal antibodies directed against members of the HER family EGFR, HER2, and HER3, in a preclinical trial of TNBC patient-derived xenografts (PDXs). METHODS: Fifteen low passage TNBC PDX tumor samples were transferred into the right mammary fat pad of mice for engraftment. When tumors reached an average size of 100-200 mm3, mice were randomized (n ≥ 6 per group) and treated following three 1-week cycles consisting of three times/week intraperitoneal (IP) injection of either formulation buffer (vehicle control) or Pan-HER (50 mg/kg). At the end of treatment, tumors were collected for Western blot, RNA, and immunohistochemistry analyses. RESULTS: All 15 TNBC PDXs were responsive to Pan-HER treatment, showing significant reductions in tumor growth consistent with Pan-HER-mediated tumor downmodulation of EGFR and HER3 protein levels and significantly decreased activation of associated HER family signaling pathways AKT and ERK. Tumor regression was observed in five of the models, which corresponded to those PDX tumor models with the highest level of HER family activation. CONCLUSIONS: The marked effect of Pan-HER in numerous HER family-dependent TNBC PDX models justifies further studies of Pan-HER in TNBC clinical trials as a potential therapeutic option.


Assuntos
Anticorpos Monoclonais/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-3/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Camundongos , Terapia de Alvo Molecular , Mutação , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas
5.
Hepatology ; 61(5): 1591-602, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25529917

RESUMO

UNLABELLED: Sorafenib, a broad tyrosine kinase inhibitor, is the only approved systemic therapy for advanced hepatocellular carcinoma (HCC) but provides limited survival benefits. Recently, immunotherapy has emerged as a promising treatment strategy, but its role remains unclear in HCCs, which are associated with decreased cytotoxic CD8(+) T-lymphocyte infiltration in both murine and human tumors. Moreover, in mouse models after sorafenib treatment intratumoral hypoxia is increased and may fuel evasive resistance. Using orthotopic HCC models, we now show that increased hypoxia after sorafenib treatment promotes immunosuppression, characterized by increased intratumoral expression of the immune checkpoint inhibitor programmed death ligand-1 and accumulation of T-regulatory cells and M2-type macrophages. We also show that the recruitment of immunosuppressive cells is mediated in part by hypoxia-induced up-regulation of stromal cell-derived 1 alpha. Inhibition of the stromal cell-derived 1 alpha receptor (C-X-C receptor type 4 or CXCR4) using AMD3100 prevented the polarization toward an immunosuppressive microenvironment after sorafenib treatment, inhibited tumor growth, reduced lung metastasis, and improved survival. However, the combination of AMD3100 and sorafenib did not significantly change cytotoxic CD8(+) T-lymphocyte infiltration into HCC tumors and did not modify their activation status. In separate experiments, antibody blockade of the programmed death ligand-1 receptor programmed death receptor-1 (PD-1) showed antitumor effects in treatment-naive tumors in orthotopic (grafted and genetically engineered) models of HCC. However, anti-PD-1 antibody treatment had additional antitumor activity only when combined with sorafenib and AMD3100 and not when combined with sorafenib alone. CONCLUSION: Anti-PD-1 treatment can boost antitumor immune responses in HCC models; when used in combination with sorafenib, anti-PD-1 immunotherapy shows efficacy only with concomitant targeting of the hypoxic and immunosuppressive microenvironment with agents such as CXCR4 inhibitors.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Imunoterapia/métodos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Niacinamida/análogos & derivados , Compostos de Fenilureia/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Receptores CXCR4/antagonistas & inibidores , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Animais , Humanos , Camundongos , Niacinamida/uso terapêutico , Sorafenibe
6.
Hum Mol Genet ; 21(13): 2973-90, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22492996

RESUMO

The purpose of this study was to investigate the protective effects of the mitochondria-targeted antioxidant catalase (MCAT) and lifespan extension in mice that express amyloid beta (Aß). Using immunoblotting and immunostaining analyses, we measured the production of full-length amyloid precursor protein (APP), soluble APPα, C-terminal fragments CTF99 and CTF83, monomeric and oligomeric Aß, Aß deposits and beta site amyloid precursor protein cleaving enzyme 1 (BACE1), in different stages of disease progression in MCAT/AßPP and AßPP mice. Using quantitative reverse transcriptase polymerase chain reaction and immunostaining analyses, we studied the expression of catalase, BACE1, the Alzheimer's disease (AD) markers, synaptophysin, APP, neprilysin, insulin-degrading enzyme and transthyretin in MCAT, AßPP, MCAT/AßPP and wild-type (WT) mice. Using the high pressure liquid chromatography analysis of 8-hydroxy-2-deoxyguanosine, we measured oxidative DNA damage in the cerebral cortical tissues from MCAT, AßPP, MCAT/AßPP and WT mice. We found that the AßPP transgenic mice that carried the human MCAT gene lived 5 months longer than did the AßPP mice. We also found that the overexpression of MCAT in the brain sections from the MCAT/AßPP transgenic mice significantly correlated with a reduction in the levels of full-length APP, CTF99, BACE1, Aß levels (40 and 42), Aß deposits and oxidative DNA damage relative to the brain sections from the AßPP mice. Interestingly, we found significantly increased levels of soluble APPα and CTF83 in the MCAT/AßPP mice, relative to the AßPP mice. These data provide direct evidence that oxidative stress plays a primary role in AD etiopathology and that in MCAT mice express Aß, MCAT prevents abnormal APP processing, reduces Aß levels and enhances Aß-degrading enzymes in mice at different ages, corresponding to different stages of disease progression. These findings indicate that mitochondria-targeted molecules may be an effective therapeutic approach to treat patients with AD.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/biossíntese , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/biossíntese , Catalase/metabolismo , Mitocôndrias/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/biossíntese , Precursor de Proteína beta-Amiloide/biossíntese , Animais , Encéfalo/patologia , Catalase/genética , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Dano ao DNA/genética , Modelos Animais de Doenças , Feminino , Insulisina/biossíntese , Insulisina/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neprilisina/biossíntese , Fármacos Neuroprotetores/metabolismo , Estresse Oxidativo , Pré-Albumina/biossíntese , RNA Mensageiro/biossíntese , Distribuição Aleatória , Sinaptofisina/biossíntese
7.
Int J Environ Res Public Health ; 8(1): 203-21, 2011 01.
Artigo em Inglês | MEDLINE | ID: mdl-21318024

RESUMO

The purpose of this study was to determine the neurotoxicity of two commonly used herbicides: picloram and triclopyr and the neuroprotective effects of the mitochondria-targeted antioxidant, SS31. Using mouse neuroblastoma (N2a) cells and primary neurons from C57BL/6 mice, we investigated the toxicity of these herbicides, and protective effects of SS1 peptide against picloram and triclopyr toxicity. We measured total RNA content, cell viability and mRNA expression of peroxiredoxins, neuroprotective genes, mitochondrial-encoded electron transport chain (ETC) genes in N2a cells treated with herbicides and SS31. Using primary neurons from C57BL/6 mice, neuronal survival was studied in neurons treated with herbicides, in neurons pretreated with SS31 plus treated with herbicides, neurons treated with SS31 alone, and untreated neurons. Significantly decreased total RNA content, and cell viability in N2a cells treated with picloram and triclopyr were found compared to untreated N2a cells. Decreased mRNA expression of neuroprotective genes, and ETC genes in cells treated with herbicides was found compared to untreated cells. Decreased mRNA expression of peroxiredoxins 1-6 in N2a cells treated with picloram was found, suggesting that picloram affects the antioxidant enzymes in N2a cells. Immunofluorescence analysis of primary neurons revealed that decreased neuronal branching and degenerating neurons in neurons treated with picloram and triclopyr. However, neurons pretreated with SS31 prevented degenerative process caused by herbicides. Based on these results, we propose that herbicides--picloram and triclopyr appear to damage neurons, and the SS31 peptide appears to protect neurons from herbicide toxicity.


Assuntos
Antioxidantes/fisiologia , Glicolatos/toxicidade , Herbicidas/toxicidade , Neurônios/efeitos dos fármacos , Oligopeptídeos/fisiologia , Picloram/toxicidade , Animais , Antioxidantes/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular , Complexo de Proteínas da Cadeia de Transporte de Elétrons/biossíntese , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Neuroblastoma , Neurônios/patologia , Neurônios/fisiologia , Oligopeptídeos/administração & dosagem , Estresse Oxidativo , Peroxirredoxinas/biossíntese , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , RNA/análise , RNA Mensageiro/biossíntese , RNA Mensageiro/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/biossíntese , Fatores de Transcrição , Transcrição Gênica
8.
Brain Res Rev ; 67(1-2): 103-18, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21145355

RESUMO

The purpose of this article is to review the recent developments of abnormal mitochondrial dynamics, mitochondrial fragmentation, and neuronal damage in neurodegenerative diseases, including Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. The GTPase family of proteins, including fission proteins, dynamin related protein 1 (Drp1), mitochondrial fission 1 (Fis1), and fusion proteins (Mfn1, Mfn2 and Opa1) are essential to maintain mitochondrial fission and fusion balance, and to provide necessary adenosine triphosphate to neurons. Among these, Drp1 is involved in several important aspects of mitochondria, including shape, size, distribution, remodeling, and maintenance of mitochondria in mammalian cells. In addition, recent advancements in molecular, cellular, electron microscopy, and confocal imaging studies revealed that Drp1 is associated with several cellular functions, including mitochondrial and peroxisomal fragmentation, phosphorylation, SUMOylation, ubiquitination, and cell death. In the last two decades, tremendous progress has been made in researching mitochondrial dynamics, in yeast, worms, and mammalian cells; and this research has provided evidence linking Drp1 to neurodegenerative diseases. Researchers in the neurodegenerative disease field are beginning to recognize the possible involvement of Drp1 in causing mitochondrial fragmentation and abnormal mitochondrial dynamics in neurodegenerative diseases. This article summarizes research findings relating Drp1 to mitochondrial fission and fusion, in yeast, worms, and mammals. Based on findings from the Reddy laboratory and others', we propose that mutant proteins of neurodegenerative diseases, including AD, PD, HD, and ALS, interact with Drp1, activate mitochondrial fission machinery, fragment mitochondria excessively, and impair mitochondrial transport and mitochondrial dynamics, ultimately causing mitochondrial dysfunction and neuronal damage.


Assuntos
GTP Fosfo-Hidrolases/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/fisiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Animais , Respiração Celular/genética , Respiração Celular/fisiologia , Dinaminas , GTP Fosfo-Hidrolases/genética , Humanos , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Modelos Animais , Mutação , Doenças Neurodegenerativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA