Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928266

RESUMO

Curcumin, a polyphenol derived from Curcuma longa, used as a dietary spice, has garnered attention for its therapeutic potential, including antioxidant, anti-inflammatory, and antimicrobial properties. Despite its known benefits, the precise mechanisms underlying curcumin's effects on consumers remain unclear. To address this gap, we employed the genetic model Drosophila melanogaster and leveraged two omics tools-transcriptomics and metabolomics. Our investigation revealed alterations in 1043 genes and 73 metabolites upon supplementing curcumin into the diet. Notably, we observed genetic modulation in pathways related to antioxidants, carbohydrates, and lipids, as well as genes associated with gustatory perception and reproductive processes. Metabolites implicated in carbohydrate metabolism, amino acid biosynthesis, and biomarkers linked to the prevention of neurodegenerative diseases such as schizophrenia, Alzheimer's, and aging were also identified. The study highlighted a strong correlation between the curcumin diet, antioxidant mechanisms, and amino acid metabolism. Conversely, a lower correlation was observed between carbohydrate metabolism and cholesterol biosynthesis. This research highlights the impact of curcumin on the diet, influencing perception, fertility, and molecular wellness. Furthermore, it directs future studies toward a more focused exploration of the specific effects of curcumin consumption.


Assuntos
Curcumina , Drosophila melanogaster , Metaboloma , Transcriptoma , Animais , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Curcumina/farmacologia , Curcumina/administração & dosagem , Metaboloma/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Dieta , Metabolômica/métodos
2.
Plant Physiol ; 195(2): 911-923, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38466177

RESUMO

Type-IV glandular trichomes, which only occur in the juvenile developmental phase of the cultivated tomato (Solanum lycopersicum), produce acylsugars that broadly protect against arthropod herbivory. Previously, we introgressed the capacity to retain type-IV trichomes in the adult phase from the wild tomato, Solanum galapagense, into the cultivated species cv. Micro-Tom (MT). The resulting MT-Galapagos enhanced trichome (MT-Get) introgression line contained 5 loci associated with enhancing the density of type-IV trichomes in adult plants. We genetically dissected MT-Get and obtained a subline containing only the locus on Chromosome 2 (MT-Get02). This genotype displayed about half the density of type-IV trichomes compared to the wild progenitor. However, when we stacked the gain-of-function allele of WOOLLY, which encodes a homeodomain leucine zipper IV transcription factor, Get02/Wo exhibited double the number of type-IV trichomes compared to S. galapagense. This discovery corroborates previous reports positioning WOOLLY as a master regulator of trichome development. Acylsugar levels in Get02/Wo were comparable to the wild progenitor, although the composition of acylsugar types differed, especially regarding fewer types with medium-length acyl chains. Agronomical parameters of Get02/Wo, including yield, were comparable to MT. Pest resistance assays showed enhanced protection against silverleaf whitefly (Bemisia tabaci), tobacco hornworm (Manduca sexta), and the fungus Septoria lycopersici. However, resistance levels did not reach those of the wild progenitor, suggesting the specificity of acylsugar types in the pest resistance mechanism. Our findings in trichome-mediated resistance advance the development of robust, naturally resistant tomato varieties, harnessing the potential of natural genetic variation. Moreover, by manipulating only 2 loci, we achieved exceptional results for a highly complex, polygenic trait, such as herbivory resistance in tomato.


Assuntos
Solanum lycopersicum , Tricomas , Tricomas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/parasitologia , Animais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação/genética , Herbivoria , Herança Multifatorial , Manduca/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia
3.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958599

RESUMO

Cancer researchers are fascinated by the chemistry of diverse natural products that show exciting potential as anticancer agents. In this study, we aimed to investigate the anticancer properties of watermelon rind extract (WRE) by examining its effects on cell proliferation, apoptosis, senescence, and global gene expression in human renal cell adenocarcinoma cells (HRAC-769-P) in vitro. Our metabolome data analysis of WRE exhibited untargeted phyto-constituents and targeted citrulline (22.29 µg/mg). HRAC-769-P cells were cultured in RPMI-1640 media and treated with 22.4, 44.8, 67.2, 88.6, 112, 134.4, and 156.8 mg·mL-1 for 24, 48, and 72 h. At 24 h after treatment, (88.6 mg·mL-1 of WRE) cell proliferation significantly reduced, more than 34% compared with the control. Cell viability decreased 48 and 72 h after treatment to 45% and 37%, respectively. We also examined poly caspase, SA-beta-galactosidase (SA-beta-gal), and wound healing activities using WRE. All treatments induced an early poly caspase response and a significant reduction in cell migration. Further, we analyzed the transcript profile of the cells grown at 44.8 mg·mL-1 of WRE after 6 h using RNA sequencing (RNAseq) analysis. We identified 186 differentially expressed genes (DEGs), including 149 upregulated genes and 37 downregulated genes, in cells treated with WRE compared with the control. The differentially expressed genes were associated with NF-Kappa B signaling and TNF pathways. Crucial apoptosis-related genes such as BMF, NPTX1, NFKBIA, NFKBIE, and NFKBID might induce intrinsic and extrinsic apoptosis. Another possible mechanism is a high quantity of citrulline may lead to induction of apoptosis by the production of increased nitric oxide. Hence, our study suggests the potential anticancer properties of WRE and provides insights into its effects on cellular processes and gene expression in HRAC-769-P cells.


Assuntos
Carcinoma de Células Renais , Citrullus , Neoplasias Renais , Humanos , Carcinoma de Células Renais/metabolismo , Transcriptoma , Citrullus/genética , Frutas/metabolismo , Citrulina/metabolismo , Caspases/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo
4.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686177

RESUMO

Fruits, vegetables, and spices are natural sources of bioactive phytochemicals, such as polyphenols, carotenoids, flavonoids, curcuminoids, terpenoids, and capsaicinoids, possessing multiple health benefits and relatively low toxicity. These compounds found in the diet play a central role in organism development and fitness. Given the complexity of the whole-body response to dietary changes, invertebrate model organisms can be valuable tools to examine the interplay between genes, signaling pathways, and metabolism. Drosophila melanogaster, an invertebrate model with its extensively studied genome, has more than 70% gene homology to humans and has been used as a model system in biological studies for a long time. The notable advantages of Drosophila as a model system, such as their low maintenance cost, high reproductive rate, short generation time and lifespan, and the high similarity of metabolic pathways between Drosophila and mammals, have encouraged the use of Drosophila in the context of screening and evaluating the impact of phytochemicals present in the diet. Here, we review the benefits of Drosophila as a model system for use in the study of phytochemical ingestion and describe the previously reported effects of phytochemical consumption in Drosophila.


Assuntos
Drosophila melanogaster , Drosophila , Humanos , Animais , Carotenoides , Diarileptanoides , Compostos Fitoquímicos/farmacologia , Mamíferos
5.
Plants (Basel) ; 11(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35448735

RESUMO

Potato (Solanum tuberosum L.) is an important food crop worldwide, and potato cyst nematodes (PCNs) are among the most serious pests. The identification of disease resistance genes and molecular markers for PCN infestation can aid in crop improvement research programs against PCN infestation. In the present study, we used high-throughput RNA sequencing to investigate the comprehensive resistance mechanisms induced by PCN infestation in the resistant cultivar Kufri Swarna and the susceptible cultivar Kufri Jyoti. PCN infestation induced 791 differentially expressed genes in resistant cultivar Kufri Swarna, comprising 438 upregulated and 353 downregulated genes. In susceptible cultivar Kufri Jyoti, 2225 differentially expressed genes were induced, comprising 1247 upregulated and 978 downregulated genes. We identified several disease resistance genes (KIN) and transcription factors (WRKY, HMG, and MYB) that were upregulated in resistant Kufri Swarna. The differentially expressed genes from several enriched KEGG pathways, including MAPK signaling, contributed to the disease resistance in Kufri Swarna. Functional network analysis showed that several cell wall biogenesis genes were induced in Kufri Swarna in response to infestation. This is the first study to identify underlying resistance mechanisms against PCN and host interaction in Indian potato varieties.

6.
Plant J ; 106(3): 588-600, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33788333

RESUMO

Polyploidy has played a crucial role in plant evolution, development and function. Synthetic autopolyploid represents an ideal system to investigate the effects of polyploidization on transcriptional regulation. In this study, we deciphered the impact of genome duplication at phenotypic and molecular levels in watermelon. Overall, 88% of the genes in tetraploid watermelon followed a >1:1 dosage effect, and accordingly, differentially expressed genes were largely upregulated. In addition, a great number of hypomethylated regions (1688) were identified in an isogenic tetraploid watermelon. These differentially methylated regions were localized in promoters and intergenic regions and near transcriptional start sites of the identified upregulated genes, which enhances the importance of methylation in gene regulation. These changes were reflected in sophisticated higher-order chromatin structures. The genome doubling caused switching of 108 A and 626 B compartments that harbored genes associated with growth, development and stress responses.


Assuntos
Cromatina/ultraestrutura , Citrullus/genética , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Cromatina/genética , Cromatina/metabolismo , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Cromossomos de Plantas/ultraestrutura , Citrullus/metabolismo , Epigenoma/genética , Estudos de Associação Genética , Genoma de Planta/genética , Poliploidia , Tetraploidia
7.
PLoS One ; 13(10): e0206183, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30379886

RESUMO

Chili peppers are an important constituent of many foods and contain medicinally valuable compounds, such as capsaicin and dihydrocapsaicin. As various dietary botanicals have anticancer properties, this study was aimed to examine the effect of Ghost pepper (Bhut Jolokia), one of the hottest chili peppers in the world, on cell proliferation, apoptosis, senescence and the global proteomic profile in human renal cell adenocarcinoma in vitro. 769-P human renal adenocarcinoma cells were cultured on RPMI-1640 media supplemented with fetal bovine serum (10%) and antibiotic-antimycotic solution (1%). Treatment stock solutions were prepared in ethanol. Cell proliferation was tested with phenol red-free media with capsaicin (0-400 µM), dihydrocapsaicin (0-400 µM), capsaicin + dihydrocapsaicin (5:1), and dry Ghost peppers (0-3 g L-1) for 24, 48 and 72 h. Polycaspase and senescence associated-beta-galactosidase (SA-beta-gal) activities were tested with capsaicin (400 µM), dihydrocapsaicin (400 µM), capsaicin (400 µM) + dihydrocapsaicin (80 µM), and ghost pepper (3 g L-1) treatments. Global proteomic profile of cells in control and ghost pepper treatment (3 g L-1) was analyzed after 6 h by a shotgun proteomic approach using tandem mass spectrometry. At 24 h after treatment (24 HAT), relative to control, cell proportion with capsaicin (400 µM), dihydrocapsaicin (400 µM), capsaicin (400 µM) + dihydrocapsaicin (80 µM), and ghost pepper (3 g L-1) treatments was reduced to 36%, 18%, 33% and 20%, respectively, and further reduced at 48 and 72 HAT. All treatments triggered an early polycaspase response. SA-beta-gal activity was normal or suppressed with all treatments. About 68,220 protein isoforms were identified by shotgun proteomic approach. Among these, about 8.2% were significantly affected by ghost pepper. Ghost pepper regulated various proteins involved in intrinsic and extrinsic apoptotic pathways, Ras, Rb/E2F, p53, TGF-beta, WNT-beta catenin, and calcium induced cell death pathways. Ghost pepper also induced changes in proteins related to methylation, acetylation, genome stability, cell cycle check points, carbohydrate, protein and other metabolism and cellular mechanisms. Ghost pepper exhibited antiproliferation activity by inducing apoptosis through a complex network of proteins in human renal cell adenocarcinoma in vitro.


Assuntos
Capsicum/química , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Extratos Vegetais/farmacologia , Proteômica/métodos , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Renais/tratamento farmacológico , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas em Tandem
8.
Ann Maxillofac Surg ; 6(1): 25-30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27563602

RESUMO

OBJECTIVE: Various techniques have been employed from time to time to achieve maxillomamdibular fixation. Although arch bars provide an effective and versatile means of maxillomandibular fixation, their use is not without shortcomings. However the introduction of intermaxillary fixation screws (IMF) has eliminated many of these issues of arch bars. The aim of the present study was to compare the advantages and disadvantages of intermaxillary fixation screws over the Erich arch bars in mandibular fractures. MATERIALS AND METHODS: Sixty dentulous patients who reported to Department of Oral and Maxillofacial Surgery, Al-Ameen Dental College and Hospital, Bijapur with mandibular fractures and required intermaxillary fixation as a part of treatment plan followd by open reduction and internal fixation under GA were selected and randomly divided into 2 groups of 30 patients each that is Group A and Group B. Group A included patients who received intermaxillary fixation with Erich arch bars. Group B includes patients who received intermaxillary fixation with IMF Screws. The parameters compared in both the groups included, surgical time taken, gloves perforation, post-operative occlusion, IMF stability, oral hygiene, patient acceptance and comfort and non-vitality characteristics. RESULTS: The average surgical time taken and gloves perforations were more in Group A,the patient acceptance and oral hygiene was better in Group B, there was not much statistically significant difference in postoperative occlusion and IMF stability in both groups. Accidental root perforation was the only limitation of IMF screws. CONCLUSION: Intermaxillary fixation with IMF screws is more efficacious compared to Erich arch bars in the treatment of mandibular fractures.

9.
J Exp Bot ; 66(5): 1369-85, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25520388

RESUMO

The exploitation of synthetic polyploids for producing seedless fruits is well known in watermelon. Tetraploid progenitors of triploid watermelon plants, compared with their diploid counterparts, exhibit wide phenotypic differences. Although many factors modulate alternative splicing (AS) in plants, the effects of autopolyploidization on AS are still unknown. In this study, we used tissues of leaf, stem, and fruit of diploid and tetraploid sweet watermelon to understand changes in gene expression and the occurrence of AS. RNA-sequencing analysis was performed along with reverse transcription quantitative PCR and rapid amplification of cDNA ends (RACE)-PCR to demonstrate changes in expression and splicing. All vegetative tissues except fruit showed an increased level of AS in the tetraploid watermelon throughout the growth period. The ploidy levels of diploids and the tetraploid were confirmed using a ploidy analyser. We identified 5362 and 1288 genes that were up- and downregulated, respectively, in tetraploid as compared with diploid plants. We further confirmed that 22 genes underwent AS events across tissues, indicating possibilities of generating different protein isoforms with altered functions of important transcription factors and transporters. Arginine biosynthesis, chlorophyllide synthesis, GDP mannose biosynthesis, trehalose biosynthesis, and starch and sucrose degradation pathways were upregulated in autotetraploids. Phloem protein 2, chloroplastic PGR5-like protein, zinc-finger protein, fructokinase-like 2, MYB transcription factor, and nodulin MtN21 showed AS in fruit tissues. These results should help in developing high-quality seedless watermelon and provide additional transcriptomic information related to other cucurbits.


Assuntos
Processamento Alternativo , Citrullus/genética , Diploide , Proteínas de Plantas/genética , Tetraploidia , Citrullus/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA