Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(8): e70630, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23940611

RESUMO

RATIONALE: New approaches to define factors underlying the immunopathogenesis of pulmonary diseases including sarcoidosis and tuberculosis are needed to develop new treatments and biomarkers. Comparing the blood transcriptional response of tuberculosis to other similar pulmonary diseases will advance knowledge of disease pathways and help distinguish diseases with similar clinical presentations. OBJECTIVES: To determine the factors underlying the immunopathogenesis of the granulomatous diseases, sarcoidosis and tuberculosis, by comparing the blood transcriptional responses in these and other pulmonary diseases. METHODS: We compared whole blood genome-wide transcriptional profiles in pulmonary sarcoidosis, pulmonary tuberculosis, to community acquired pneumonia and primary lung cancer and healthy controls, before and after treatment, and in purified leucocyte populations. MEASUREMENTS AND MAIN RESULTS: An Interferon-inducible neutrophil-driven blood transcriptional signature was present in both sarcoidosis and tuberculosis, with a higher abundance and expression in tuberculosis. Heterogeneity of the sarcoidosis signature correlated significantly with disease activity. Transcriptional profiles in pneumonia and lung cancer revealed an over-abundance of inflammatory transcripts. After successful treatment the transcriptional activity in tuberculosis and pneumonia patients was significantly reduced. However the glucocorticoid-responsive sarcoidosis patients showed a significant increase in transcriptional activity. 144-blood transcripts were able to distinguish tuberculosis from other lung diseases and controls. CONCLUSIONS: Tuberculosis and sarcoidosis revealed similar blood transcriptional profiles, dominated by interferon-inducible transcripts, while pneumonia and lung cancer showed distinct signatures, dominated by inflammatory genes. There were also significant differences between tuberculosis and sarcoidosis in the degree of their transcriptional activity, the heterogeneity of their profiles and their transcriptional response to treatment.


Assuntos
Neoplasias Pulmonares/sangue , Pneumonia/sangue , Sarcoidose Pulmonar/sangue , Transcriptoma , Tuberculose Pulmonar/sangue , Antituberculosos/uso terapêutico , Biomarcadores/sangue , Estudos de Casos e Controles , Glucocorticoides/uso terapêutico , Humanos , Mediadores da Inflamação/sangue , Interferons/fisiologia , Neoplasias Pulmonares/diagnóstico , Neutrófilos/metabolismo , Pneumonia/diagnóstico , Pneumonia/tratamento farmacológico , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Sarcoidose Pulmonar/diagnóstico , Sarcoidose Pulmonar/tratamento farmacológico , Transcrição Gênica , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico
2.
J Immunol ; 191(4): 1732-43, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23842752

RESUMO

Tuberculosis, caused by Mycobacterium tuberculosis, remains a leading cause of mortality and morbidity worldwide, causing ≈ 1.4 million deaths per year. Key immune components for host protection during tuberculosis include the cytokines IL-12, IL-1, and TNF-α, as well as IFN-γ and CD4(+) Th1 cells. However, immune factors determining whether individuals control infection or progress to active tuberculosis are incompletely understood. Excess amounts of type I IFN have been linked to exacerbated disease during tuberculosis in mouse models and to active disease in patients, suggesting tight regulation of this family of cytokines is critical to host resistance. In addition, the immunosuppressive cytokine IL-10 is known to inhibit the immune response to M. tuberculosis in murine models through the negative regulation of key proinflammatory cytokines and the subsequent Th1 response. We show in this study, using a combination of transcriptomic analysis, genetics, and pharmacological inhibitors, that the TPL-2-ERK1/2 signaling pathway is important in mediating host resistance to tuberculosis through negative regulation of type I IFN production. The TPL-2-ERK1/2 signaling pathway regulated production by macrophages of several cytokines important in the immune response to M. tuberculosis as well as regulating induction of a large number of additional genes, many in a type I IFN-dependent manner. In the absence of TPL-2 in vivo, excess type I IFN promoted IL-10 production and exacerbated disease. These findings describe an important regulatory mechanism for controlling tuberculosis and reveal mechanisms by which type I IFN may promote susceptibility to this important disease.


Assuntos
Regulação da Expressão Gênica/imunologia , Interferon Tipo I/biossíntese , MAP Quinase Quinase Quinases/imunologia , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas/imunologia , Tuberculose/imunologia , Animais , Carga Bacteriana , Citocinas/biossíntese , Citocinas/genética , Resistência à Doença , Regulação para Baixo/imunologia , Feminino , Perfilação da Expressão Gênica , Interferon Tipo I/genética , Interleucina-10/imunologia , Listeria monocytogenes/imunologia , Listeria monocytogenes/isolamento & purificação , Listeriose/imunologia , MAP Quinase Quinase Quinases/deficiência , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/isolamento & purificação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/deficiência , Transcrição Gênica
3.
Trends Immunol ; 33(1): 14-25, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22094048

RESUMO

Neutrophils are rapidly recruited to sites of mycobacterial infection, where they phagocytose bacilli. Whether neutrophils can kill mycobacteria in vivo probably depends on the tissue microenvironment, stage of infection, individual host, and infecting organism. The interaction of neutrophils with macrophages, as well as the downstream effects on T cell activity, could result in a range of outcomes from early clearance of infection to dissemination of viable bacteria together with an attenuated acquired immune response. In established disease, neutrophils accumulate in situations of high pathogen load or immunological dysfunction, and are likely to contribute to pathology. These activities may have clinical importance in terms of new treatments, targeted interventions and vaccine strategies.


Assuntos
Neutrófilos/imunologia , Tuberculose/imunologia , Animais , Humanos , Macrófagos/imunologia , Mycobacterium/imunologia , Tuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA