RESUMO
PURPOSE: Activating missense mutations of KRAS are the most frequent oncogenic driver events in lung adenocarcinoma (LUAD). However, KRAS isoforms are highly heterogeneous, and data on the potential isoform-dependent therapeutic vulnerabilities are still lacking. EXPERIMENTAL DESIGN: We developed an isogenic cell-based platform to compare the oncogenic properties and specific therapeutic actionability of KRAS-mutant isoforms. In parallel, we analyzed clinicopathologic and genomic data from 3,560 patients with non-small cell lung cancer (NSCLC) to survey allele-specific features associated with oncogenic KRAS mutations. RESULTS: In isogenic cell lines expressing different mutant KRAS isoforms, we identified isoform-specific biochemical, biological, and oncogenic properties both in vitro and in vivo. These exclusive features correlated with different therapeutic responses to MEK inhibitors, with KRAS G12C and Q61H mutants being more sensitive compared with other isoforms. In vivo, combined KRAS G12C and MEK inhibition was more effective than either drug alone. Among patients with NSCLCs that underwent comprehensive tumor genomic profiling, STK11 and ATM mutations were significantly enriched among tumors harboring KRAS G12C, G12A, and G12V mutations. KEAP1 mutation was significantly enriched among KRAS G12C and KRAS G13X LUADs. KRAS G13X-mutated tumors had the highest frequency of concurrent STK11 and KEAP1 mutations. Transcriptomic profiling revealed unique patterns of gene expression in each KRAS isoform, compared with KRAS wild-type tumors. CONCLUSIONS: This study demonstrates that KRAS isoforms are highly heterogeneous in terms of concurrent genomic alterations and gene-expression profiles, and that stratification based on KRAS alleles should be considered in the design of future clinical trials.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Mutação , Fator 2 Relacionado a NF-E2/genética , Isoformas de Proteínas/genética , Proteínas Proto-Oncogênicas p21(ras)/genéticaRESUMO
While KRAS mutations are common in non-small cell lung cancer (NSCLC), effective treatments are lacking. Here, we report that half of KRAS-mutant NSCLCs aberrantly express the homeobox protein HOXC10, largely due to unappreciated defects in PRC2, which confers sensitivity to combined BET/MEK inhibitors in xenograft and PDX models. Efficacy of the combination is dependent on suppression of HOXC10 by BET inhibitors. We further show that HOXC10 regulates the expression of pre-replication complex (pre-RC) proteins in sensitive tumors. Accordingly, BET/MEK inhibitors suppress pre-RC proteins in cycling cells, triggering stalled replication, DNA damage, and death. These studies reveal a promising therapeutic strategy for KRAS-mutant NSCLCs, identify a predictive biomarker of response, and define a subset of NSCLCs with a targetable epigenetic vulnerability.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Epigênese Genética , Proteínas de Homeodomínio/metabolismo , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Acrilonitrila/análogos & derivados , Acrilonitrila/farmacologia , Compostos de Anilina/farmacologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MAP Quinase Quinase 1/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas/antagonistas & inibidores , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
PURPOSE: MET inhibitors can be effective therapies in patients with MET exon 14 (METex14) mutant non-small cell lung cancer (NSCLC). However, long-term efficacy is limited by the development of drug resistance. In this study, we characterize acquired amplification of wild-type (WT) KRAS as a molecular mechanism behind crizotinib resistance in three cases of METex14-mutant NSCLC and propose a combination therapy to target it. EXPERIMENTAL DESIGN: The patient-derived cell line and xenograft (PDX) DFCI358 were established from a crizotinib-resistant METex14-mutant patient tumor with massive focal amplification of WT KRAS. To characterize the mechanism of KRAS-mediated resistance, molecular signaling was analyzed in the parental cell line and its KRAS siRNA-transfected derivative. Sensitivity of the cell line to ligand stimulation was assessed and KRAS-dependent expression of EGFR ligands was quantified. Drug combinations were screened for efficacy in vivo and in vitro using viability and apoptotic assays. RESULTS: KRAS amplification is a recurrent genetic event in crizotinib-resistant METex14-mutant NSCLC. The key characteristics of this genetic signature include uncoupling MET from downstream effectors, relative insensitivity to dual MET/MEK inhibition due to compensatory induction of PI3K signaling, KRAS-induced expression of EGFR ligands and hypersensitivity to ligand-dependent and independent activation, and reliance on PI3K signaling upon MET inhibition. CONCLUSIONS: Using patient-derived cell line and xenografts, we characterize the mechanism of crizotinib resistance mediated by KRAS amplification in METex14-mutant NSCLC and demonstrate the superior efficacy of the dual MET/PI3K inhibition as a therapeutic strategy addressing this resistance mechanism.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Éxons , Amplificação de Genes , Neoplasias Pulmonares/genética , Mutação , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Crizotinibe/farmacologia , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Modelos Biológicos , Fosfatidilinositol 3-Quinases/genética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Importance: Osimertinib mesylate is used globally to treat EGFR-mutant non-small cell lung cancer (NSCLC) with tyrosine kinase inhibitor resistance mediated by the EGFR T790M mutation. Acquired resistance to osimertinib is a growing clinical challenge that is poorly understood. Objective: To understand the molecular mechanisms of acquired resistance to osimertinib and their clinical behavior. Design, Setting, and Participants: Patients with advanced NSCLC who received osimertinib for T790M-positive acquired resistance to prior EGFR tyrosine kinase inhibitor were identified from a multi-institutional cohort (n = 143) and a confirmatory trial cohort (NCT01802632) (n = 110). Next-generation sequencing of tumor biopsies after osimertinib resistance was performed. Genotyping of plasma cell-free DNA was studied as an orthogonal approach, including serial plasma samples when available. The study and analysis were finalized on November 9, 2017. Main Outcomes and Measures: Mechanisms of resistance and their association with time to treatment discontinuation on osimertinib. Results: Of the 143 patients evaluated, 41 (28 [68%] women) had tumor next-generation sequencing after acquired resistance to osimertinib. Among 13 patients (32%) with maintained T790M at the time of resistance, EGFR C797S was seen in 9 patients (22%). Among 28 individuals (68%) with loss of T790M, a range of competing resistance mechanisms was detected, including novel mechanisms such as acquired KRAS mutations and targetable gene fusions. Time to treatment discontinuation was shorter in patients with T790M loss (6.1 vs 15.2 months), suggesting emergence of pre-existing resistant clones; this finding was confirmed in a validation cohort of 110 patients with plasma cell-free DNA genotyping performed after osimertinib resistance. In studies of serial plasma levels of mutant EGFR, loss of T790M at resistance was associated with a smaller decrease in levels of the EGFR driver mutation after 1 to 3 weeks of therapy (100% vs 83% decrease; P = .01). Conclusions and Relevance: Acquired resistance to osimertinib mediated by loss of the T790M mutation is associated with early resistance and a range of competing resistance mechanisms. These data provide clinical evidence of the heterogeneity of resistance in advanced NSCLC and a need for clinical trial strategies that can overcome multiple concomitant resistance mechanisms or strategies for preventing such resistance.
Assuntos
Acrilamidas/uso terapêutico , Compostos de Anilina/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Neoplasias Pulmonares/patologiaRESUMO
BACKGROUND: Pemetrexed is a folate antimetabolite used in the management of advanced adenocarcinoma of the lung. We sought to assess the impact of pemetrexed on intracranial disease control and radiation-related toxicity among patients with adenocarcinoma of the lung who received stereotactic radiation for brain metastases. MATERIALS/METHODS: We identified 149 patients with adenocarcinoma of the lung and newly diagnosed brain metastases without a targetable mutation receiving stereotactic radiation. Kaplan-Meier plots and Cox regression were employed to assess whether use of pemetrexed was associated with intracranial disease control and radiation necrosis. RESULTS: Among the entire cohort, 105 patients received pemetrexed while 44 did not. Among patients who were chemotherapy-naïve, use of pemetrexed (nâ¯=â¯43) versus alternative regimens after stereotactic radiation (nâ¯=â¯24) was associated with a reduced likelihood of developing new brain metastases (HR 0.42, 95% CI 0.22-0.79, pâ¯=â¯0.006) and a reduced need for salvage brain-directed radiation therapy (HR 0.36, 95% CI 0.18-0.73, pâ¯=â¯0.005). Pemetrexed use was associated with increased radiographic necrosis. (HR 2.70, 95% CI 1.09-6.70, pâ¯=â¯0.03). CONCLUSIONS: Patients receiving pemetrexed after brain-directed stereotactic radiation appear to benefit from improved intracranial disease control at the possible expense of radiation-related radiographic necrosis. Whether symptomatic radiation injury occurs more frequently in patients receiving pemetrexed requires further study.
Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/radioterapia , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/terapia , Encéfalo/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Pemetrexede/administração & dosagem , Lesões por Radiação/etiologia , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Idoso , Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Necrose , Lesões por Radiação/patologia , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Estudos RetrospectivosAssuntos
Neoplasias Encefálicas/terapia , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma de Células Renais/terapia , Imunoterapia/efeitos adversos , Melanoma/terapia , Lesões por Radiação/etiologia , Radiocirurgia/efeitos adversos , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/secundário , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Terapia Combinada , Feminino , Seguimentos , Humanos , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Neoplasias Renais/terapia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Masculino , Melanoma/imunologia , Melanoma/patologia , Pessoa de Meia-Idade , Prognóstico , Lesões por Radiação/patologia , Taxa de SobrevidaRESUMO
This corrects the article DOI: 10.1038/ncomms14922.
RESUMO
BACKGROUND: Brain metastases are associated with significant morbidity and mortality. Population-level data describing the incidence and prognosis of patients with brain metastases are lacking. The aim of this study was to characterize the incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy using recently released data from the Surveillance, Epidemiology, and End Results (SEER) program. METHODS: We identified 1302166 patients with diagnoses of nonhematologic malignancies originating outside of the CNS between 2010 and 2013 and described the incidence proportion and survival of patients with brain metastases. RESULTS: We identified 26430 patients with brain metastases at diagnosis of cancer. Patients with small cell and non-small cell lung cancer displayed the highest rates of identified brain metastases at diagnosis; among patients presenting with metastatic disease, patients with melanoma (28.2%), lung adenocarcinoma (26.8%), non-small cell lung cancer not otherwise specified/other lung cancer (25.6%), small cell lung cancer (23.5%), squamous cell carcinoma of the lung (15.9%), bronchioloalveolar carcinoma (15.5%), and renal cancer (10.8%) had an incidence proportion of identified brain metastases of >10%. Patients with brain metastases secondary to prostate cancer, bronchioloalveolar carcinoma, and breast cancer displayed the longest median survival (12.0, 10.0, and 10.0 months, respectively). CONCLUSIONS: In this study we provide generalizable estimates of the incidence and prognosis for patients with brain metastases at diagnosis of a systemic malignancy. These data may allow for appropriate utilization of brain-directed imaging as screening for subpopulations with cancer and have implications for clinical trial design and counseling of patients regarding prognosis.
Assuntos
Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/secundário , Neoplasias/patologia , Humanos , Incidência , Prognóstico , Programa de SEER , Taxa de Sobrevida , Estados Unidos/epidemiologiaRESUMO
Adenosquamous lung tumours, which are extremely poor prognosis, may result from cellular plasticity. Here, we demonstrate lineage switching of KRAS+ lung adenocarcinomas (ADC) to squamous cell carcinoma (SCC) through deletion of Lkb1 (Stk11) in autochthonous and transplant models. Chromatin analysis reveals loss of H3K27me3 and gain of H3K27ac and H3K4me3 at squamous lineage genes, including Sox2, ΔNp63 and Ngfr. SCC lesions have higher levels of the H3K27 methyltransferase EZH2 than the ADC lesions, but there is a clear lack of the essential Polycomb Repressive Complex 2 (PRC2) subunit EED in the SCC lesions. The pattern of high EZH2, but low H3K27me3 mark, is also prevalent in human lung SCC and SCC regions within ADSCC tumours. Using FACS-isolated populations, we demonstrate that bronchioalveolar stem cells and club cells are the likely cells-of-origin for SCC transitioned tumours. These findings shed light on the epigenetics and cellular origins of lineage-specific lung tumours.
Assuntos
Adenocarcinoma/genética , Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Complexo Repressor Polycomb 2/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Quinases Ativadas por AMP , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metilação , Camundongos da Linhagem 129 , Camundongos Knockout , Complexo Repressor Polycomb 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células Tumorais CultivadasRESUMO
Insertion mutations in EGFR and HER2 both occur at analogous positions in exon 20. Non-small cell lung cancer (NSCLC) patients with tumors harboring these mutations seldom achieve clinical responses to dacomitinib and afatinib, two covalent quinazoline-based inhibitors of EGFR or HER2, respectively. In this study, we investigated the effects of specific EGFR and HER2 exon 20 insertion mutations from NSCLC patients that had clinically achieved a partial response after dacomitinib treatment. We identified Gly770 as a common feature among the drug-sensitive mutations. Structural modeling suggested that this mutation may facilitate inhibitor binding to EGFR. Introduction of Gly770 into two dacomitinib-resistant EGFR exon 20 insertion mutants restored sensitivity to dacomitinib. Based on these findings, we used afatinib to treat an NSCLC patient whose tumor harbored the HER2 V777_G778insGSP mutation and achieved a durable partial response. We further identified secondary mutations in EGFR (T790M or C797S) and HER2 (C805S) that mediated acquired drug resistance in drug-sensitive EGFR or HER2 exon 20 insertion models. Overall, our findings identified a subset of EGFR and HER2 exon 20 insertion mutations that are sensitive to existing covalent quinazoline-based EGFR/HER2 inhibitors, with implications for current clinical treatment and next-generation small-molecule inhibitors. Cancer Res; 77(10); 2712-21. ©2017 AACR.
Assuntos
Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Éxons , Mutagênese Insercional , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Adulto , Substituição de Aminoácidos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Códon , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/química , Feminino , Expressão Gênica , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-2/química , Tomografia Computadorizada por Raios X , Resultado do Tratamento , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Inhibitors that target the receptor tyrosine kinase (RTK)/Ras/mitogen-activated protein kinase (MAPK) pathway have led to clinical responses in lung and other cancers, but some patients fail to respond and in those that do resistance inevitably occurs (Balak et al., 2006; Kosaka et al., 2006; Rudin et al., 2013; Wagle et al., 2011). To understand intrinsic and acquired resistance to inhibition of MAPK signaling, we performed CRISPR-Cas9 gene deletion screens in the setting of BRAF, MEK, EGFR, and ALK inhibition. Loss of KEAP1, a negative regulator of NFE2L2/NRF2, modulated the response to BRAF, MEK, EGFR, and ALK inhibition in BRAF-, NRAS-, KRAS-, EGFR-, and ALK-mutant lung cancer cells. Treatment with inhibitors targeting the RTK/MAPK pathway increased reactive oxygen species (ROS) in cells with intact KEAP1, and loss of KEAP1 abrogated this increase. In addition, loss of KEAP1 altered cell metabolism to allow cells to proliferate in the absence of MAPK signaling. These observations suggest that alterations in the KEAP1/NRF2 pathway may promote survival in the presence of multiple inhibitors targeting the RTK/Ras/MAPK pathway.
Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Técnicas de Inativação de Genes , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pulmonares/tratamento farmacológicoAssuntos
Biópsia/métodos , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Progressão da Doença , Cloridrato de Erlotinib/uso terapêutico , Estudos de Viabilidade , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Estudos Prospectivos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-met/metabolismoRESUMO
PURPOSE: Genotype-directed therapy is the standard of care for advanced non-small cell lung cancer (NSCLC), but obtaining tumor tissue for genotyping remains a challenge. Circulating tumor cell (CTC) or cell-free DNA (cfDNA) analysis may allow for noninvasive evaluation. This prospective trial evaluated CTCs and cfDNA in EGFR-mutant NSCLC patients treated with erlotinib until progression. EXPERIMENTAL DESIGN: EGFR-mutant NSCLC patients were enrolled in a phase II trial of erlotinib. Blood was collected at baseline, every 2 months on study, and at disease progression. Plasma genotyping was performed by droplet digital PCR for EGFR19del, L858R, and T790M. CTCs were isolated by CellSave, enumerated, and analyzed by immunofluorescence for CD45 and pan-cytokeratin and EGFR and MET FISH were also performed. Rebiopsy was performed at disease progression. RESULTS: Sixty patients were enrolled; 44 patients discontinued therapy for disease progression. Rebiopsy occurred in 35 of 44 patients (80%), with paired CTC/cfDNA analysis in 41 of 44 samples at baseline and 36 of 44 samples at progression. T790M was identified in 23 of 35 (66%) tissue biopsies and 9 of 39 (23%) cfDNA samples. CTC analysis at progression identified MET amplification in 3 samples in which tissue analysis could not be performed. cfDNA analysis identified T790M in 2 samples in which rebiopsy was not possible. At diagnosis, high levels of cfDNA but not high levels of CTCs correlated with progression-free survival. CONCLUSIONS: cfDNA and CTCs are complementary, noninvasive assays for evaluation of acquired resistance to first-line EGFR TKIs and may expand the number of patients in whom actionable genetic information can be obtained at acquired resistance. Serial cfDNA monitoring may offer greater clinical utility than serial monitoring of CTCs. Clin Cancer Res; 22(24); 6010-20. ©2016 AACR.
Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ácidos Nucleicos Livres/efeitos dos fármacos , Receptores ErbB/deficiência , Cloridrato de Erlotinib/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Células Neoplásicas Circulantes/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Ácidos Nucleicos Livres/genética , DNA de Neoplasias/efeitos dos fármacos , DNA de Neoplasias/genética , Progressão da Doença , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Células Neoplásicas Circulantes/patologia , Estudos Prospectivos , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
There is increasing interest in inhibitors targeting BET (bromodomain and extra-terminal) proteins because of the association between this family of proteins and cancer progression. BET inhibitors were initially shown to have efficacy in hematologic malignancies; however, a number of studies have now shown that BET inhibitors can also block progression of non-hematologic malignancies. In this Review, we summarize the efficacy of BET inhibitors in select solid tumors; evaluate the role of BET proteins in mediating resistance to current targeted therapies; and consider potential toxicities of BET inhibitors. We also evaluate recently characterized mechanisms of resistance to BET inhibitors; summarize ongoing clinical trials with these inhibitors; and discuss potential future roles of BET inhibitors in patients with solid tumors.
Assuntos
Neoplasias/metabolismo , Proteínas/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Humanos , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológicoRESUMO
Despite compelling antitumour activity of antibodies targeting the programmed death 1 (PD-1): programmed death ligand 1 (PD-L1) immune checkpoint in lung cancer, resistance to these therapies has increasingly been observed. In this study, to elucidate mechanisms of adaptive resistance, we analyse the tumour immune microenvironment in the context of anti-PD-1 therapy in two fully immunocompetent mouse models of lung adenocarcinoma. In tumours progressing following response to anti-PD-1 therapy, we observe upregulation of alternative immune checkpoints, notably T-cell immunoglobulin mucin-3 (TIM-3), in PD-1 antibody bound T cells and demonstrate a survival advantage with addition of a TIM-3 blocking antibody following failure of PD-1 blockade. Two patients who developed adaptive resistance to anti-PD-1 treatment also show a similar TIM-3 upregulation in blocking antibody-bound T cells at treatment failure. These data suggest that upregulation of TIM-3 and other immune checkpoints may be targetable biomarkers associated with adaptive resistance to PD-1 blockade.
Assuntos
Imunidade Adaptativa , Neoplasias Pulmonares/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Idoso , Animais , Antígeno B7-H1/administração & dosagem , Antígeno B7-H1/imunologia , Receptor Celular 2 do Vírus da Hepatite A , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Receptores Virais/genética , Receptores Virais/imunologiaRESUMO
PURPOSE: NF1 is a tumor suppressor that negatively regulates Ras signaling. NF1 mutations occur in lung cancer, but their clinical significance is unknown. We evaluated clinical and molecular characteristics of NF1 mutant lung cancers with comparison to tumors with KRAS mutations. EXPERIMENTAL DESIGN: Between July 2013 and October 2014, 591 non-small cell lung cancer (NSCLC) tumors underwent targeted next-generation sequencing in a 275 gene panel that evaluates gene mutations and genomic rearrangements. NF1 and KRAS cohorts were identified, with subsequent clinical and genomic analysis. RESULTS: Among 591 patients, 60 had NF1 mutations (10%) and 141 (24%) had KRAS mutations. 15 NF1 mutations (25%) occurred with other oncogenic mutations [BRAF (2); ERBB2 (2); KRAS (9); HRAS (1); NRAS (1)]. There were 72 unique NF1 variants. NF1 tumor pathology was diverse, including both adenocarcinoma (36, 60%) and squamous cell carcinoma (10, 17%). In contrast, KRAS mutations occurred predominantly in adenocarcinoma (136, 96%). Both mutations were common in former/current smokers. Among NF1 tumors without concurrent oncogenic alterations, TP53 mutations/2-copy deletions occurred more often (33, 65%) than with KRAS mutation (46, 35%; P < 0.001). No difference between cohorts was seen with other tumor suppressors. CONCLUSIONS: NF1 mutations define a unique population of NSCLC. NF1 and KRAS mutations present in similar patient populations, but NF1 mutations occur more often with other oncogenic alterations and TP53 mutations. Therapeutic strategies targeting KRAS activation, including inhibitors of MAP kinase signaling, may warrant investigation in NF1 mutant tumors. Tumor-suppressor inactivation patterns may help further define novel treatment strategies. Clin Cancer Res; 22(13); 3148-56. ©2016 AACR.