Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 174: 116564, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608525

RESUMO

During resolution of inflammation, specialized proresolving mediators (SPMs), including resolvins, are produced to restore tissue homeostasis. We hypothesized that there might be a dysregulation of SPMs pathways in pathological vascular remodeling and that resolvin D2 (RvD2) might prevent vascular remodeling and contractile and endothelial dysfunction in a model of obesity and hypertension. In aortic samples of patients with or without abdominal aortic aneurysms (AAA), we evaluated gene expression of enzymes involved in SPMs synthesis (ALOXs), SPMs receptors and pro-inflammatory genes. In an experimental model of aortic dilation induced by high fat diet (HFD, 60%, eighteen weeks) and angiotensin II (AngII) infusion (four weeks), we studied the effect of RvD2 administration in aorta and small mesenteric arteries structure and function and markers of inflammation. In human macrophages we evaluated the effects of AngII and RvD2 in macrophages function and SPMs profile. In patients, we found positive correlations between AAA and obesity, and between AAA and expression of ALOX15, RvD2 receptor GPR18, and pro-inflammatory genes. There was an inverse correlation between the expression of aortic ALOX15 and AAA growth rate. In the mice model, RvD2 partially prevented the HFD plus AngII-induced obesity and adipose tissue inflammation, hypertension, aortic and mesenteric arteries remodeling, hypercontratility and endothelial dysfunction, and the expression of vascular proinflammatory markers and cell apoptosis. In human macrophages, RvD2 prevented AngII-induced impaired efferocytosis and switched SPMs profile. RvD2 might represent a novel protective strategy in preventing vascular damage associated to hypertension and obesity likely through effects in vascular and immune cells.


Assuntos
Ácidos Docosa-Hexaenoicos , Hipertensão , Camundongos Endogâmicos C57BL , Obesidade , Remodelação Vascular , Animais , Masculino , Humanos , Ácidos Docosa-Hexaenoicos/farmacologia , Hipertensão/metabolismo , Hipertensão/tratamento farmacológico , Obesidade/complicações , Obesidade/metabolismo , Remodelação Vascular/efeitos dos fármacos , Camundongos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Dieta Hiperlipídica/efeitos adversos , Angiotensina II , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Camundongos Obesos , Vasoconstrição/efeitos dos fármacos , Inflamação/patologia , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Modelos Animais de Doenças
2.
Int J Mol Sci ; 19(7)2018 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-29937494

RESUMO

Mesenchymal stem cells (MSCs) have emerged as a promising treatment for inflammatory diseases. The immunomodulatory effect of MSCs takes place both by direct cell-to-cell contact and by means of soluble factors that leads to an increased accumulation of regulatory immune cells at the sites of inflammation. Similar efficacy of MSCs has been described regardless of the route of administration used, the inflammation conditions and the major histocompatibility complex context. These observations raise the question of whether the migration of the MSCs to the inflamed tissues is a pre-requisite to achieve their beneficial effect. To address this, we examined the biodistribution and the efficacy of intraperitoneal luciferase-expressing human expanded adipose-derived stem cells (Luci-eASCs) in a mouse model of colitis. Luci-eASC-infused mice were stratified according to their response to the Luci-eASC treatment. According to the stratification criteria, there was a tendency to increase the bioluminescence signal in the intestine at the expense of a decrease in the bioluminescence signal in the liver in the "responder" mice. These data thus suggest that the accumulation of the eASCs to the inflamed tissues is beneficial for achieving an optimal modulation of inflammation.


Assuntos
Tecido Adiposo/citologia , Colite/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Tecido Adiposo/metabolismo , Animais , Comunicação Celular , Diferenciação Celular , Movimento Celular , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Modelos Animais de Doenças , Genes Reporter , Humanos , Injeções Intraperitoneais , Mucosa Intestinal/metabolismo , Intestinos/patologia , Fígado/metabolismo , Fígado/patologia , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Baço/metabolismo , Baço/patologia , Ácido Trinitrobenzenossulfônico
3.
Pharmacol Res ; 133: 236-249, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29309904

RESUMO

Cyclooxygenase-2 (COX-2) derived-prostanoids participate in the altered vascular function and mechanical properties in cardiovascular diseases. We investigated whether regulator of calcineurin 1 (Rcan1) participates in vascular contractility and stiffness through the regulation of COX-2. For this, wild type (Rcan1+/+) and Rcan1-deficient (Rcan1-/-) mice untreated or treated with the COX-2 inhibitor rofecoxib were used. Vascular function and structure were analysed by myography. COX-2 and phospo-p65 expression were studied by western blotting and immunohistochemistry and TXA2 production by ELISA. We found that Rcan1 deficiency increases COX-2 and IL-6 expression and NF-κB activation in arteries and vascular smooth muscle cells (VSMC). Adenoviral-mediated re-expression of Rcan1.4 in Rcan1-/- VSMC normalized COX-2 expression. Phenylephrine-induced vasoconstrictor responses were greater in aorta from Rcan1-/- compared to Rcan1+/+ mice. This increased response were diminished by etoricoxib, furegrelate, SQ 29548, cyclosporine A and parthenolide, inhibitors of COX-2, TXA2 synthase, TP receptors, calcineurin and NF-κB, respectively. Endothelial removal and NOS inhibition increased phenylephrine responses only in Rcan1+/+ mice. TXA2 levels were greater in Rcan1-/- mice. In small mesenteric arteries, vascular function and structure were similar in both groups of mice; however, vessels from Rcan1-/- mice displayed an increase in vascular stiffness that was diminished by rofecoxib. In conclusion, our results suggest that Rcan1 might act as endogenous negative modulator of COX-2 expression and activity by inhibiting calcineurin and NF-kB pathways to maintain normal contractility and vascular stiffness in aorta and small mesenteric arteries, respectively. Our results uncover a new role for Rcan1 in vascular contractility and mechanical properties.


Assuntos
Aorta Torácica/fisiologia , Ciclo-Oxigenase 2/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Artérias Mesentéricas/fisiologia , Proteínas Musculares/fisiologia , Músculo Liso Vascular/fisiologia , Animais , Proteínas de Ligação ao Cálcio , Células Cultivadas , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia
4.
Front Immunol ; 8: 638, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642759

RESUMO

Mesenchymal stem cells (MSCs) have a large potential in cell therapy for treatment of inflammatory and autoimmune diseases, thanks to their immunomodulatory properties. The encouraging results in animal models have initiated the translation of MSC therapy to clinical trials. In cell therapy protocols with MSCs, administered intravenously, several studies have shown that a small proportion of infused MSCs can traffic to the draining lymph nodes (LNs). This is accompanied with an increase of different types of regulatory immune cells in the LNs, suggesting the importance of migration of MSCs to the LNs in order to contribute to immunomodulatory response. Intranodal (IN), also referred as intralymphatic, injection of cells, like dendritic cells, is being proposed in the clinic for the treatment of cancer and allergy, showing that this route of administration is clinically safe and efficient. In this study, we investigated, for the first time, the biodistribution and the efficacy of Luciferase+ adipose-derived MSCs (Luci-eASCs), infused through the inguinal LNs (iLNs), in normal mice and in inflamed mice with colitis. Most of the Luci-eASCs remain in the iLNs and in the adipose tissue surrounding the inguinal LNs. A small proportion of Luci-eASCs can migrate to other locations within the lymphatic system and to other tissues and organs, having a preferential migration toward the intestine in colitic mice. Our results show that the infused Luci-eASCs protected 58% of the mice against induced colitis. Importantly, a correlation between the response to eASC treatment and a higher accumulation of eASCs in popliteal, parathymic, parathyroid, and mesenteric LNs were found. Altogether, these results suggest that IN administration of eASCs is feasible and may represent an effective strategy for cell therapy protocols with human adipose-derived MSCs in the clinic for the treatment of immune-mediated disorders.

5.
Arterioscler Thromb Vasc Biol ; 33(5): 1036-45, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23430616

RESUMO

OBJECTIVE: Atherosclerosis and restenosis are multifactorial diseases associated with abnormal vascular smooth muscle cell (VSMC) proliferation. Nuclear factor-Y (NF-Y) plays a major role in transcriptional activation of the CYCLIN B1 gene (CCNB1), a key positive regulator of cell proliferation and neointimal thickening. Here, we investigated the role of NF-Y in occlusive vascular disease. APPROACH AND RESULTS: We performed molecular and expression studies in cultured cells, animal models, and human tissues. We find upregulation of NF-Y and cyclin B1 expression in proliferative regions of murine atherosclerotic plaques and mechanically induced lesions, which correlates with higher binding of NF-Y to target sequences in the CCNB1 promoter. NF-YA expression in neointimal lesions is detected in VSMCs, macrophages, and endothelial cells. Platelet-derived growth factor-BB, a main inductor of VSMC growth and neointima development, induces the recruitment of NF-Y to the CCNB1 promoter and augments both CCNB1 mRNA expression and cell proliferation through extracellular signal-regulated kinase 1/2 and Akt activation in rat and human VSMCs. Moreover, adenovirus-mediated overexpression of a NF-YA-dominant negative mutant inhibits platelet-derived growth factor-BB-induced CCNB1 expression and VSMC proliferation in vitro and neointimal lesion formation in a mouse model of femoral artery injury. We also detect NF-Y expression and DNA-binding activity in human neointimal lesions. CONCLUSIONS: Our results identify NF-Y as a key downstream effector of the platelet-derived growth factor-BB-dependent mitogenic pathway that is activated in experimental and human vasculoproliferative diseases. They also identify NF-Y inhibition as a novel and attractive strategy for the local treatment of neointimal formation induced by vessel denudation.


Assuntos
Fator de Ligação a CCAAT/fisiologia , Músculo Liso Vascular/citologia , Neointima/etiologia , Animais , Apolipoproteínas E/fisiologia , Aterosclerose/etiologia , Becaplermina , Fator de Ligação a CCAAT/antagonistas & inibidores , Proliferação de Células , Células Cultivadas , Ciclina B1/genética , Células Endoteliais/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neointima/terapia , Proteínas Proto-Oncogênicas c-sis/farmacologia , Ratos , Ratos Wistar
6.
Carcinogenesis ; 30(3): 440-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19126644

RESUMO

Although C-MYC is overexpressed in a number of tumors, the mechanisms governing its expression in normal or tumor cells are not completely understood. Recruitment of the Retinoblastoma protein family members to gene promoters by E2F factors has a dominant negative effect on their activity during the G(0) and G(1) phases of the cell cycle. Despite the presence of an E2F-binding site on the C-MYC promoter, it escapes the repressive effect of E2F-Retinoblastoma complexes through unknown mechanisms during exit from quiescence. We hypothesized that occupancy of E2F elements by factors distinct from E2F might account for this escape. To test this hypothesis, we investigated whether the E2F element in the C-MYC promoter is regulated differently than E2F elements in promoters that are activated at the G(1)-S transition. Employing gel shift analysis, the E2F element from the C-MYC promoter was found to form a unique non-E2F complex, referred to as E2F C-MYC Specific (EMYCS), which is not observed with E2F elements from several other promoters. The DNA contact residues for EMYCS are distinct but overlapping with residues required for binding of E2F proteins. Finally, the approximate estimated molecular weight of the DNA-binding component of EMCYS is 105 kDa. Functional studies indicate that EMYCS has transcriptional transactivation capacity and suggest that it is required to activate the C-MYC promoter during exit from quiescence.


Assuntos
Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/genética , Ativação Transcricional
7.
Arterioscler Thromb Vasc Biol ; 27(1): 63-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17068288

RESUMO

OBJECTIVE: The role of the nuclear receptor peroxisome-proliferator activated receptor (PPAR)-beta/delta in endothelial cells remains unclear. Interestingly, the selective PPARbeta/delta ligand GW501516 is in phase II clinical trials for dyslipidemia. Here, using GW501516, we have assessed the involvement of PPARbeta/delta in endothelial cell proliferation and angiogenesis. METHODS AND RESULTS: Western blot analysis indicated PPARbeta/delta was expressed in primary human umbilical and aortic endothelial cells, and in the endothelial cell line, EAHy926. Treatment with GW501516 increased human endothelial cell proliferation and morphogenesis in cultures in vitro, endothelial cell outgrowth from murine aortic vessels in vitro, and angiogenesis in a murine matrigel plug assay in vivo. GW501516 induced vascular endothelial cell growth factor mRNA and peptide release, as well as adipose differentiation-related protein (ADRP), a PPARbeta/delta target gene. GW501516-induced proliferation, morphogenesis, vascular endothelial growth factor (VEGF), and ADRP were absent in endothelial cells transfected with dominant-negative PPARbeta/delta. Furthermore, treatment of cells with cyclo-VEGFI, a VEGF receptor1/2 antagonist, abolished GW501516-induced endothelial cell proliferation and tube formation. CONCLUSIONS: PPARbeta/delta is a novel regulator of endothelial cell proliferation and angiogenesis through VEGF. The use of GW501516 to treat dyslipidemia may need to be carefully monitored in patients susceptible to angiogenic disorders.


Assuntos
Proliferação de Células , Endotélio Vascular/metabolismo , Neovascularização Fisiológica/fisiologia , PPAR delta/metabolismo , PPAR beta/metabolismo , Aorta Torácica/citologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Endotélio Vascular/citologia , Regulação da Expressão Gênica/fisiologia , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , PPAR delta/genética , PPAR beta/genética , Tiazóis/farmacologia , Veias Umbilicais/citologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
J Biol Chem ; 280(33): 29479-87, 2005 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-15955804

RESUMO

The calcineurin/nuclear factor of activated T-cell (NFAT) pathway represents a crucial transducer of cellular function. There is increasing evidence placing the sarcolemmal calcium pump, or plasma membrane calcium/calmodulin ATPase pump (PMCA), as a potential modulator of signal transduction pathways. We demonstrate a novel interaction between PMCA and the calcium/calmodulin-dependent phosphatase, calcineurin, in mammalian cells. The interaction domains were located to the catalytic domain of PMCA4b and the catalytic domain of the calcineurin A subunit. Endogenous calcineurin activity, assessed by measuring the transcriptional activity of its best characterized substrate, NFAT, was significantly inhibited by 60% in the presence of ectopic PMCA4b. This inhibition was notably reversed by the co-expression of the PMCA4b interaction domain, demonstrating the functional significance of this interaction. PMCA4b was, however, unable to confer its inhibitory effect in the presence of a calcium/calmodulin-independent constitutively active mutant calcineurin A suggesting a calcium/calmodulin-dependent mechanism. The modulatory function of PMCA4b is further supported by the observation that endogenous calcineurin moves from the cytoplasm to the plasma membrane when PMCA4b is overexpressed. We suggest recruitment by PMCA4b of calcineurin to a low calcium environment as a possible explanation for these findings. In summary, our results offer strong evidence for a novel functional interaction between PMCA and calcineurin, suggesting a role for PMCA as a negative modulator of calcineurin-mediated signaling pathways in mammalian cells. This study reinforces the emerging role of PMCA as a molecular organizer and regulator of signaling transduction pathways.


Assuntos
Inibidores de Calcineurina , Calcineurina/química , ATPases Transportadoras de Cálcio/fisiologia , Proteínas de Transporte de Cátions/fisiologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas Nucleares/antagonistas & inibidores , Sarcolema/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Calcineurina/metabolismo , ATPases Transportadoras de Cálcio/química , Domínio Catalítico , Proteínas de Transporte de Cátions/química , Células Cultivadas , Humanos , Fatores de Transcrição NFATC , ATPases Transportadoras de Cálcio da Membrana Plasmática , Transporte Proteico , Transdução de Sinais , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA