Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 231: 105676, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33341509

RESUMO

The present study aimed at investigating interactive effects between dietary lipids and both short- and long-term exposures to a low, environmentally realistic, cadmium (Cd) concentration. Juvenile rainbow trout were fed four isolipidic diets (31.7 g/kg) enriched in either linoleic acid (LA, 18:2n-6), alpha-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3) or docosahexaenoic acid (DHA, 22:6n-3). From the 4th week of this 10-week experiment, the lipid level of the diet was increased (120.0 g/kg) and half of the fish fed each diet were aqueously exposed to Cd (0.3 µg/L) while the other half were not exposed to Cd (control). Fish were sampled and their liver was harvested for fatty acid profile, hepatic Cd and calcium concentrations, total glutathione level and gene expression assessment, either (i) after 4 weeks of feeding and 24 h of Cd contamination (day 29) (short-term Cd exposure) or (ii) after 10 weeks of feeding and 6 weeks of Cd contamination (day 70) (long-term Cd exposure). We found that both dietary lipids and Cd exposure influenced fatty acid homeostasis and metabolism. The hepatic fatty acid profile mostly reflected that of the diet (e.g. n-3/n-6 ratio) with some differences, including selective retention of specific long chain polyunsaturated fatty acids (LC-PUFAs) like DHA and active biotransformation of dietary LA and ALA into LC-PUFAs. Cd effects on hepatic fatty acid profiles were influenced by the duration of the exposure and the nutritional status of the fish. The effects of diet and Cd exposure on the fatty acid profiles were only sparsely explained by variation of the expression pattern of genes involved in fatty acid metabolism. The biological responses to Cd were also influenced by dietary lipids. Fish fed the ALA-enriched diet seemed to be the least affected by the Cd exposure, as they showed a higher detoxifying ability against Cd with an early upregulation of protective metallothionein a (MTa) and apoptosis regulator BCL2-Like1 (BCLx) genes, an increased long-term phospholipid synthesis and turnover and fatty acid bioconversion efficiency, as well as a lower long-term accumulation of Cd in their liver. In contrast, fish fed the EPA-enriched diet seemed to be the most sensitive to a long-term Cd exposure, with an impaired growth performance and a decreased antioxidant capacity (lower glutathione level). Our results highlight that low, environmentally realistic aqueous concentrations of Cd can affect biological response in fish and that these effects are influenced by the dietary fatty acid composition.


Assuntos
Cádmio/toxicidade , Dieta , Exposição Ambiental , Ácidos Graxos/metabolismo , Fígado/metabolismo , Oncorhynchus mykiss/metabolismo , Estresse Fisiológico , Animais , Cálcio/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/crescimento & desenvolvimento , Poluentes Químicos da Água/toxicidade
2.
Aquat Toxicol ; 205: 100-113, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30352337

RESUMO

Polyunsaturated fatty acids (PUFAs) have key biological roles in fish cells. We recently showed that the phospholipid composition of rainbow trout liver cells (RTL-W1 cell line) modulates their tolerance to an acute cadmium (Cd) challenge. Here, we investigated (i) the extent to which PUFAs and Cd impact fatty acid homeostasis and metabolism in these cells and (ii) possible mechanisms by which specific PUFAs may confer cytoprotection against Cd. First, RTL-W1 cells were cultivated for one week in growth media spiked with 50 µmol L-1 of either alpha-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3), linoleic acid (LA, 18:2n-6) or arachidonic acid (AA, 20:4n-6) in order to modulate their fatty acid profile. Then, the cells were challenged with Cd (0, 50 or 100 µmol L-1) for 24 h prior to assaying viability, fatty acid profile, intracellular Cd content, proteomic landscape and expression levels of genes involved in fatty acid metabolism, synthesis of PUFA-derived signalling molecules and stress response. We observed that the fatty acid supply and, to a lesser extent, the exposure to Cd influenced cellular fatty acid homeostasis and metabolism. The cellular fatty acid composition of fish liver cells modulated their tolerance to an acute Cd challenge. Enrichments in ALA, EPA, and, to a lesser extent, AA conferred cytoprotection while enrichment in LA had no impact on cell viability. The present study ruled out the possibility that cytoprotection reflects a decreased Cd burden. Our results rather suggest that the PUFA-derived cytoprotection against Cd occurs through a reduction of the oxidative stress induced by Cd and a differential induction of the eicosanoid cascade, with a possible role of peroxiredoxin and glutaredoxin (antioxidant enzymes) as well as cytosolic phospholipase A2 (enzyme initiating the eicosanoid cascade).


Assuntos
Cádmio/metabolismo , Ácidos Graxos Insaturados/metabolismo , Hepatócitos/metabolismo , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Animais , Metabolismo dos Lipídeos/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Fosfolipídeos/metabolismo , Proteômica , Poluentes Químicos da Água/metabolismo
3.
Chemosphere ; 205: 328-338, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29704840

RESUMO

Long chain polyunsaturated fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA, 20:5n-3) affect zooplankton fitness and ability to cope with environmental stressors. However, the impact of LC-PUFAs on zooplankton sensitivity to chemical stressors is unknown. Here, we aimed to document the interaction between EPA and cadmium (Cd), as model chemical stressor, in Daphnia magna. A life-history experiment was performed in which daphnid neonates were raised into adulthood on three diets of different lipid composition: (i) algae mix; (ii) algae mix supplemented with control liposomes; (iii) algae mix supplemented with liposomes containing EPA. Juveniles (3rd, 4th and 5th brood) released by daphnids during this life-history experiment were sampled, challenged with Cd during 48 h and their immobility was assessed. At the end of this life-history experiment, another immobilisation test was performed with adults from each treatment. Daphnids absorbed, incorporated and transferred ingested EPA to their offspring. Liposome feeding increased adult tolerance to Cd. The presence of EPA in liposomes did not increase adult tolerance to Cd. Offspring's tolerance to Cd was influenced by the brood number and the maternal diet. It was positively correlated with the PUFA level in body neutral lipids, especially alpha-linolenic acid (ALA, 18:3n-3) and negatively correlated with the saturated fatty acid level in body neutral lipids, especially stearic acid (18:0). Overall, these results emphasize the importance of dietary lipids and maternal transfer of body lipids in D. magna sensitivity to Cd and highlight the need to take into account these parameters in ecotoxicological studies and risk assessment.


Assuntos
Cádmio/toxicidade , Daphnia/efeitos dos fármacos , Dieta , Contaminação de Alimentos/análise , Lipídeos/química , Poluentes Químicos da Água/toxicidade , Envelhecimento , Animais , Carga Corporal (Radioterapia) , Daphnia/crescimento & desenvolvimento
4.
Biochim Biophys Acta Proteins Proteom ; 1866(1): 155-165, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28694077

RESUMO

Limited knowledge of the molecular evolution of deep-sea fish proteomes so far suggests that a few widespread residue substitutions in cytosolic proteins binding hydrophilic ligands contribute to resistance to the effects of high hydrostatic pressure (HP). Structure-function studies with additional protein systems, including membrane bound proteins, are essential to provide a more general picture of adaptation in these extremophiles. We explored molecular features of HP adaptation in proteins binding hydrophobic ligands, either in lipid bilayers (cytochrome P450 1A - CYP1A) or in the cytosol (the aryl hydrocarbon receptor - AHR), and their partners P450 oxidoreductase (POR) and AHR nuclear translocator (ARNT), respectively. Cloning studies identified the full-length coding sequence of AHR, CYP1A and POR, and a partial sequence of ARNT from Coryphaenoides armatus, an abyssal gadiform fish thriving down to 5000m depth. Inferred protein sequences were aligned with many non-deep-sea homologs to identify unique amino acid substitutions of possible relevance in HP adaptation. Positionally unique substitutions of various physicochemical properties were found in all four proteins, usually at sites of strong-to-absolute residue conservation. Some were in domains deemed important for protein-protein interaction or ligand binding. In addition, some involved removal or addition of beta-branched residues; local modifications of beta-branched residue patterns could be important to HP adaptation. In silico predictions further suggested that some unique substitutions might substantially modulate the flexibility of the polypeptide segment in which they are found. Repetitive motifs unique to the abyssal fish AHR were predicted to be rich in glycosylation sites, suggesting that post-translational changes could be involved in adaptation as well. Recombinant CYP1A and AHR showed functional properties (spectral characteristics, catalytic activity and ligand binding) that demonstrate proper folding at 1atm, indicating that they could be used as deep-sea fish protein models to further evaluate protein function under pressure. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone".


Assuntos
Adaptação Fisiológica , Translocador Nuclear Receptor Aril Hidrocarboneto/química , Sistema Enzimático do Citocromo P-450/química , Proteínas de Peixes/química , Gadiformes/metabolismo , Receptores de Hidrocarboneto Arílico/química , Sequência de Aminoácidos , Anfíbios , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Sítios de Ligação , Aves , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Gadiformes/genética , Expressão Gênica , Pressão Hidrostática , Mamíferos , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Répteis , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
5.
Aquat Toxicol ; 177: 171-81, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27288598

RESUMO

The polyunsaturated fatty acid (PUFA) composition of fish tissues, which generally reflects that of the diet, affects various cellular properties such as membrane structure and fluidity, energy metabolism and susceptibility to oxidative stress. Since these cellular parameters can play an important role in the cellular response to organic and inorganic pollutants, a variation of the PUFA supply might modify the toxicity induced by such xenobiotics. In this work, we investigated whether the cellular fatty acid profile has an impact on the in vitro cell sensitivity to two environmental pollutants: methylmercury and cadmium. Firstly, the fatty acid composition of the rainbow trout liver cell line RTL-W1 was modified by enriching the growth medium with either alpha-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), linoleic acid (LA, 18:2n-6), arachidonic acid (AA, 20:4n-6) or docosapentaenoic acid (DPA, 22:5n-6). These modified cells and their control (no PUFA enrichment) were then challenged for 24h with increasing concentrations of methylmercury or cadmium. We observed that (i) the phospholipid composition of the RTL-W1 cells was profoundly modulated by changing the PUFA content of the growth medium: major modifications were a high incorporation of the supplemented PUFA in the cellular phospholipids, the appearance of direct elongation and desaturation metabolites in the cellular phospholipids as well as a change in the gross phospholipid composition (PUFA and monounsaturated fatty acid (MUFA) levels and n-3/n-6 ratio); (ii) ALA, EPA and DPA enrichment significantly protected the RTL-W1 cells against both methylmercury and cadmium; (iv) DHA enrichment significantly protected the cells against cadmium but not methylmercury; (v) AA and LA enrichment had no impact on the cell tolerance to both methylmercury and cadmium; (vi) the abundance of 20:3n-6, a metabolite of the n-6 biotransformation pathway, in phospholipids was negatively correlated to the cell tolerance to both methylmercury and cadmium. Overall, our results highlighted the importance of the fatty acid supply on the tolerance of fish liver cells to methylmercury and cadmium.


Assuntos
Cádmio/toxicidade , Ácidos Graxos Insaturados/metabolismo , Hepatócitos/metabolismo , Compostos de Metilmercúrio/toxicidade , Oncorhynchus mykiss/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Biotransformação , Cádmio/metabolismo , Linhagem Celular , Meios de Cultura , Compostos de Metilmercúrio/metabolismo , Fatores de Proteção
6.
Aquat Toxicol ; 173: 43-52, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26836508

RESUMO

Hydrostatic pressure (HP) increases by about 1 atmosphere (0.1MPa) for each ten-meter depth increase in the water column. This thermodynamical parameter could well influence the response to and effects of xenobiotics in the deep-sea biota, but this possibility remains largely overlooked. To grasp the extent of HP adaptation in deep-sea fish, comparative studies with living cells of surface species exposed to chemicals at high HP are required. We initially conducted experiments with precision-cut liver slices of a deep-sea fish (Coryphaenoides rupestris), co-exposed for 15h to the aryl hydrocarbon receptor (AhR) agonist 3-methylcholanthrene at HP levels representative of the surface (0.1MPa) and deep-sea (5-15MPa; i.e., 500-1500m depth) environments. The transcript levels of a suite of stress-responsive genes, such as the AhR battery CYP1A, were subsequently measured (Lemaire et al., 2012; Environ. Sci. Technol. 46, 10310-10316). Strikingly, the AhR agonist-mediated increase of CYP1A mRNA content was pressure-dependently reduced in C. rupestris. Here, the same co-exposure scenario was applied for 6 or 15h to liver slices of a surface fish, Dicentrarchus labrax, a coastal species presumably not adapted to high HP. Precision-cut liver slices of D. labrax were also used in 1h co-exposure studies with the pro-oxidant tert-butylhydroperoxide (tBHP) as to investigate the pressure-dependence of the oxidative stress response (i.e., reactive oxygen production, glutathione and lipid peroxidation status). Liver cells remained viable in all experiments (adenosine triphosphate content). High HP precluded the AhR agonist-mediated increase of CYP1A mRNA expression in D. labrax, as well as that of glutathione peroxidase, and significantly reduced that of heat shock protein 70. High HP (1h) also tended per se to increase the level of oxidative stress in liver cells of the surface fish. Trends to an increased resistance to tBHP were also noted. Whether the latter observation truly reflects a protective response to oxidative stress will be addressed in future co-exposure studies with both surface and deep-sea fish liver cells, using additional pro-oxidant chemicals. Altogether, data on CYP1A inducibility with D. labrax and C. rupestris support the view that high HP represses AhR signaling in marine fishes, and that only species adapted to thrive in the deep-sea have evolved the molecular adaptations necessary to counteract to some extent this inhibition.


Assuntos
Bass/fisiologia , Pressão Hidrostática , Fígado/efeitos dos fármacos , Metilcolantreno/toxicidade , Xenobióticos/toxicidade , Animais , Proteínas de Peixes/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Poluentes Químicos da Água/toxicidade
7.
Environ Res ; 120: 18-26, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23051620

RESUMO

Polychlorobiphenyls (PCBs), polybromodiphenylethers (PBDEs) and organochlorine pesticides (OCPs), such as dichlorodiphenyltrichloroethane (DDT) and hexachlorobenzene (HCB), are considered as endocrine disruptors in laboratory and wild animals. This study investigated whether these compounds and their hydroxylated metabolites (HO-PCBs and HO-PBDEs) may affect the homoeostasis of vitamin A, a dietary hormone, in the blubber and serum of twenty lactating grey seals sampled at early and late lactation on the Isle of May, Scotland. The effect of naturally produced compounds such as the methoxylated (MeO)-PBDEs was also examined. Vitamin A levels in inner blubber (37±9 µg/g wet weight (ww) and 92±32 µg/g ww at early and late lactation, respectively) and serum (408±143 and 390±98 ng/ml at early and late lactation, respectively) appeared to be positively related to ΣPCBs, ΣPBDEs and several individual PCB and PBDE congeners in inner blubber and serum. These findings may suggest enhanced mobilisation of hepatic retinoid stores and redistribution in the blubber, a storage site for vitamin A in marine mammals. We have also reported that serum concentrations of ΣHO-PCBs and 4-OH-CB107 tended to increase with circulating vitamin A levels. Although the direction of the relationships may sometimes differ from those reported in the literature, our results are in agreement with previous findings highlighting a disruption of vitamin A homoeostasis in the blubber and bloodstream following exposure to environmental pollutants. The fact that vitamin A and PCBs appeared to share common mechanisms of mobilisation and transfer during lactation in grey seals (Debier et al., 2004; Vanden Berghe et al., 2010) may also play a role in the different relationships observed between vitamin A and lipophilic pollutants.


Assuntos
Disruptores Endócrinos/efeitos adversos , Hidrocarbonetos Halogenados/efeitos adversos , Focas Verdadeiras/sangue , Vitamina A/sangue , Tecido Adiposo/química , Animais , Feminino , Éteres Difenil Halogenados/efeitos adversos , Hidrocarbonetos Clorados/efeitos adversos , Lactação , Bifenilos Policlorados/efeitos adversos
8.
Environ Sci Technol ; 46(18): 10310-6, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22900608

RESUMO

While deep-sea fish accumulate high levels of persistent organic pollutants (POPs), the toxicity associated with this contamination remains unknown. Indeed, the recurrent collection of moribund individuals precludes experimental studies to investigate POP effects in this fauna. We show that precision-cut liver slices (PCLS), an in vitro tool commonly used in human and rodent toxicology, can overcome such limitation. This technology was applied to individuals of the deep-sea grenadier Coryphaenoides rupestris directly upon retrieval from 530-m depth in Trondheimsfjord (Norway). PCLS remained viable and functional for 15 h when maintained in an appropriate culture media at 4 °C. This allowed experimental exposure of liver slices to the model POP 3-methylcholanthrene (3-MC; 25 µM) at levels of hydrostatic pressure mimicking shallow (0.1 megapascal or MPa) and deep-sea (5-15 MPa; representative of 500-1500 m depth) environments. As in shallow water fish, 3-MC induced the transcription of the detoxification enzyme cytochrome P4501A (CYP1A; a biomarker of exposure to POPs). This induction was diminished at elevated pressure, suggesting a limited responsiveness of C. rupestris toward POPs in its native environment. This very first in vitro toxicological investigation on a deep-sea fish opens the route for understanding pollutants effects in this highly exposed fauna.


Assuntos
Gadiformes/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Metilcolantreno/toxicidade , Poluentes Químicos da Água/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Citocromo P-450 CYP1A1/genética , Monitoramento Ambiental , Gadiformes/genética , Técnicas de Preparação Histocitológica , Pressão Hidrostática , Noruega , Ativação Transcricional/efeitos dos fármacos
9.
Arch Biochem Biophys ; 514(1-2): 1-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21767527

RESUMO

Arenicola marina lives in marine environments where hydrogen peroxide concentrations reach micromolar levels. The annelid also forms reactive species through metabolic pathways. Its antioxidant systems include a cytosolic peroxiredoxin, peroxiredoxin 6 (AmPrx6 or AmPRDX6) that shows high homology to the mammalian 1-Cys peroxiredoxin. Previous work confirmed the peroxidase activity of AmPrx6 in the presence of dithiotreitol. Herein, we performed an in vitro kinetic characterization of the recombinant enzyme. AmPrx6 reduced hydrogen peroxide and peroxynitrite with rate constants of 1.1×10(7) and 2×10(6)M(-1)s(-1), respectively, at pH 7.4 and 25°C. Reduction of tert-butyl hydroperoxide was slower. The pK(a) of the peroxidatic thiol of AmPrx6 was determined as 5.1±0.2, indicating that it exists as thiolate, the reactive species, at physiological pH. The reductive part of the catalytic cycle was also explored. Hydrogen sulfide, present in millimolar concentrations in marine sediments where the annelid lives and that is able to reduce the mammalian 1-Cys peroxiredoxin, did not support AmPrx6 peroxidase activity. The enzyme was not reduced by other potential physiological reductants tested. Our data indicate that in this annelid, Prx6 could contribute to peroxide detoxification in the presence of a so far unidentified reducing counterpart.


Assuntos
Peróxido de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/metabolismo , Peroxirredoxina VI/metabolismo , Ácido Peroxinitroso/metabolismo , Poliquetos/enzimologia , Animais , Glutationa/metabolismo , Cinética , Oxirredução , Compostos de Sulfidrila/metabolismo , terc-Butil Hidroperóxido/metabolismo
10.
Free Radic Biol Med ; 45(4): 482-93, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18503776

RESUMO

Peroxiredoxins (PRDXs) are a superfamily of thiol-dependent peroxidases found in all phyla. PRDXs are mechanistically divided into three subfamilies, namely typical 2-Cys, atypical 2-Cys, and 1-Cys PRDXs. To reduce peroxides, the N-terminal peroxidatic Cys of PRDXs is first oxidized into sulfenic acid. This intermediate is reduced by forming a disulfide bond either with a resolving Cys of another monomeric entity (typical 2-Cys) or of the same molecule (atypical 2-Cys). In 1-Cys PRDXs, the resolving Cys is missing and the sulfenic acid of the peroxidatic Cys is reduced by a heterologous thiol-containing reductant. In search of a homolog of human 1-Cys PRDX6 in Arenicola marina, an annelid worm living in intertidal sediments, we have cloned and characterized a PRDX exhibiting high sequence homology with its mammalian counterpart. However, A. marina PRDX6 possesses five Cys among which two Cys function as peroxidatic and resolving Cys of typical 2-Cys PRDXs. Thus, A. marina PRDX6 belongs to a transient group exhibiting sequence homologies with mammalian 1-Cys PRDX6 but must be mechanistically classified into typical 2-Cys PRDXs. Moreover, PRDX6 is highly expressed in tissues directly exposed to the external environment, suggesting that this PRDX may be of particular importance for protection against exogenous oxidative attacks.


Assuntos
Anelídeos/enzimologia , Cisteína/metabolismo , Peroxirredoxina VI/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Catálise , Clonagem Molecular , Cisteína/química , Espectrometria de Massas , Dados de Sequência Molecular , Peroxirredoxina VI/química , Peroxirredoxina VI/metabolismo , Homologia de Sequência de Aminoácidos
11.
Protein Sci ; 17(4): 700-10, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18359859

RESUMO

The peroxiredoxins (PRDXs) define a superfamily of thiol-dependent peroxidases able to reduce hydrogen peroxide, alkyl hydroperoxides, and peroxynitrite. Besides their cytoprotective antioxidant function, PRDXs have been implicated in redox signaling and chaperone activity, the latter depending on the formation of decameric high-molecular-weight structures. PRDXs have been mechanistically divided into three major subfamilies, namely typical 2-Cys, atypical 2-Cys, and 1-Cys PRDXs, based on the number and position of cysteines involved in the catalysis. We report the structure of the C45S mutant of annelid worm Arenicola marina PRDX6 in three different crystal forms determined at 1.6, 2.0, and 2.4 A resolution. Although A. marina PRDX6 was cloned during the search of annelid homologs of mammalian 1-Cys PRDX6s, the crystal structures support its assignment to the mechanistically typical 2-Cys PRDX subfamily. The protein is composed of two distinct domains: a C-terminal domain and an N-terminal domain exhibiting a thioredoxin fold. The subunits are associated in dimers compatible with the formation of intersubunit disulfide bonds between the peroxidatic and the resolving cysteine residues in the wild-type enzyme. The packing of two crystal forms is very similar, with pairs of dimers associated as tetramers. The toroid-shaped decamers formed by dimer association and observed in most typical 2-Cys PRDXs is not present. Thus, A. marina PRDX6 presents structural features of typical 2-Cys PRDXs without any formation of toroid-shaped decamers, suggesting that it should function more like a cytoprotective antioxidant enzyme or a modulator of peroxide-dependent cell signaling rather than a molecular chaperone.


Assuntos
Peroxirredoxina VI/química , Peroxirredoxina VI/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Dimerização , Dissulfetos/química , Modelos Moleculares , Dados de Sequência Molecular , Poliquetos , Estrutura Quaternária de Proteína , Alinhamento de Sequência
12.
Eur J Dermatol ; 15(3): 146-51, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15908295

RESUMO

Many studies of UVA-induced cell damage use skin cells obtained during plastic surgery. As the skin is contaminated by micro-organisms, antibiotics need to be added to primary skin cell culture media. This study analysed the impact of the most widely used agents, penicillin, streptomycin, and amphotericin B deoxycholate (amB), on UVA-irradiated human skin fibroblasts. The results show that the presence of amB in cell culture media increases the susceptibility of fibroblasts to UVA and the intracellular level of reactive oxygen species, even when cells are irradiated in amB-free saline. This photosensitising effect of amB can be prevented if the antifungal agent is removed from the culture medium at least 24 hours before irradiation. Moreover, the use of streptomycin during cell culture partly protects cells against the UVA-induced mortality linked to amB. Acellular tests on lipid micelles suggest that this protective effect could result from an inhibition of lipid peroxidation by the antibacterial agent. In conclusion, antibiotics should be used with care in cell culture media if the cells are to be used in physiological studies of fine mechanisms in UVA-susceptibility of skin cells. In other cases, cells should be maintained in antibiotic-free media for 24 hours before irradiation.


Assuntos
Antibacterianos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Fármacos Fotossensibilizantes/farmacologia , Raios Ultravioleta/efeitos adversos , Adulto , Anfotericina B/farmacologia , Análise de Variância , Células Cultivadas , Ácido Desoxicólico/farmacologia , Relação Dose-Resposta à Radiação , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Penicilinas/farmacologia , Probabilidade , Estudos de Amostragem , Sensibilidade e Especificidade , Pele/citologia , Pele/patologia , Estreptomicina/farmacologia
13.
FEBS Lett ; 571(1-3): 161-5, 2004 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-15280035

RESUMO

Peroxiredoxins are an ubiquitous family of peroxidases widely distributed among prokaryotes and eukaryotes. Peroxiredoxin 5, which is the last discovered mammalian member, was previously shown to reduce peroxides with the use of reducing equivalents derived from thioredoxin. We report here that human peroxiredoxin 5 is also a peroxynitrite reductase. Analysis of peroxiredoxin 5 mutants, in which each of the cysteine residues was mutated, suggests that the nucleophilic attack on the O-O bond of peroxynitrite is performed by the N-terminal peroxidatic Cys(47). Moreover, with the use of pulse radiolysis, we show that human peroxiredoxin 5 reduces peroxynitrite with an unequalled high rate constant of (7+/-3)x10(7) M(-1)s(-1).


Assuntos
Oxirredutases/química , Peroxidases/química , Sequência de Aminoácidos , Animais , Humanos , Invertebrados , Cinética , Mamíferos , Dados de Sequência Molecular , Oxirredutases/metabolismo , Peroxidases/metabolismo , Peroxirredoxinas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
14.
Zygote ; 11(2): 107-18, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12828410

RESUMO

Two prooxidant agents, 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH), a generator of free radicals in the culture medium, and buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis, were used to reinforce from the morula stage (day 5 post-insemination, p.i.) the oxidative stress encountered by bovine embryos in culture. Exposure to increasing concentrations of both prooxidants from the morula stage did not affect blastocyst formation but some blastocysts were found degenerated on day 8 in a dose-dependent manner (0, 0.001, 0.01, 0.1 mM AAPH gave respectively 0, 10%, 32%, 48% degeneration, while 0, 0.1, 0.2, 0.4 mM BSO led respectively to 0, 14%, 30%, 41% degeneration). Hatching rates and cell numbers of surviving blastocysts were not affected. Morulae and early blastocysts exposed from day 5 to day 6 p.i. appeared more resistant than expanded blastocysts (75-80% survival vs 20-65%; p < 0.05). Treatment with BSO significantly decreased the level of reduced glutathione in day 7 blastocysts (0.02 vs 0.42 pmol per embryo in the control) while AAPH had no effect (0.38 pmol per embryo). The proportion ofcells showing membrane lesions was increased in degenerated blastocysts from day 7.5 p.i. In AAPH-treated, but not in BSO-treated embryos, cell membrane permeabilisation seems to occur before blastocyst degeneration. DNA fragmentation evaluated by the TUNEL technique was increased in day 7 blastocysts by both prooxidants (2.8 +/- 0.4 in the control group vs 4.5 +/- 0.4 and 6.0 +/- 0.4 respectively in the AAPH- and BSO-treated groups). Addition of an inhibitor of caspase-3, DEVD-CHO, partially prevented DNA fragmentation, indicating that prooxidant treatment induced a caspase-dependent pathway of apoptosis.


Assuntos
Amidinas/farmacologia , Blastocisto/efeitos dos fármacos , Glutationa/efeitos dos fármacos , Mórula/efeitos dos fármacos , Oxidantes/farmacologia , Animais , Butionina Sulfoximina/farmacologia , Bovinos , Morte Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Marcação In Situ das Extremidades Cortadas , Estresse Oxidativo/efeitos dos fármacos
15.
Free Radic Res ; 36(9): 967-74, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12448822

RESUMO

European seabass (Dicentrarchus labrax) erythrocytes treated with tert-butyl hydroperoxide (t-BHP) showed decreasing levels of reduced glutathione, increased lipid peroxidation and DNA damage, and ultimately underwent haemolysis. The addition of the marine luciferin coelenterazine (CLZn) markedly delayed the onset of the haemolytic process induced by t-BHP as well as lipid peroxidation and glutathione oxidation. CLZn also protected the red blood cells' DNA against t-BHP-triggered damage. CLZn's oxidation product coelenteramine (CLM) also delayed the lysis of the cells as well as the occurrence of oxidative stress indicators but it did not offer protection against DNA damage. Both compounds proved more efficient than the vitamin E analogue Trolox C at similar doses. These results demonstrate the ability of CLZn and CLM to protect fish cells against oxidative stress, providing further support to the evolutionary model suggesting that CLZn's first physiological role was that of an antioxidant in fish thriving in surface layers of the ocean, later evolving into its light-emitting function in deep-sea species.


Assuntos
Bass/sangue , Eritrócitos/efeitos dos fármacos , Imidazóis , Pirazinas/farmacologia , terc-Butil Hidroperóxido/toxicidade , Animais , Cromanos/farmacologia , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eritrócitos/citologia , Glutationa/metabolismo , Hemólise/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo , Substâncias Reativas com Ácido Tiobarbitúrico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA