Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 38(3): 110283, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35045294

RESUMO

Acute damage to the intestinal epithelium can be repaired via de-differentiation of mature intestinal epithelial cells (IECs) to a stem-like state, but there is a lack of knowledge on how intestinal stem cells function after chronic injury, such as in inflammatory bowel disease (IBD). We developed a chronic-injury model in human colonoid monolayers by repeated rounds of air-liquid interface and submerged culture. We use this model to understand how chronic intestinal damage affects the ability of IECs to (1) respond to microbial stimulation, using the Toll-like receptor 5 (TLR5) agonist FliC and (2) regenerate and protect the epithelium from further damage. Repeated rounds of damage impair the ability of IECs to regrow and respond to TLR stimulation. We also identify mRNA expression and DNA methylation changes in genes associated with IBD and colon cancer. This methodology results in a human model of recurrent IEC injury like that which occurs in IBD.


Assuntos
Técnicas de Cultura de Células/métodos , Mucosa Intestinal/fisiologia , Organoides/fisiologia , Neoplasias do Colo , Metilação de DNA , Humanos , Doenças Inflamatórias Intestinais , Regeneração/fisiologia , Células-Tronco/fisiologia
2.
J Leukoc Biol ; 108(1): 309-321, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32057139

RESUMO

Intestinal epithelial cells provide a front line of defense by establishing a barrier against food Ags, pathogens, and commensal microorganisms. This defense includes the establishment of a tolerogenic environment in the gastrointestinal (GI) tract. The intestinal epithelium replenishes itself by cell turnover every 4-5 days, and this process is facilitated by various pathways of communication between the intestinal epithelial cells (IECs), the underlying stromal cell network, and professional immune cells, which together help establish a proper intestinal stem cell (ISC) niche in the crypt. However, during a state of inflammation, such as in inflammatory bowel diseases (IBD), these communication pathways can be altered, and this can lead to the development of inflammatory IECs within the crypt that further drive inflammation. Here, we review the current literature looking at crosstalk between immune cells, stromal cells, and IECs: how does the immune system potentially alter the ISC niche, and how do IECs influence intestinal immunity? We discuss the latest research using single cell RNA sequencing and intestinal organoid cultures to help answer these questions. A better understanding of this complex crosstalk can help lead to a better understanding of intestinal biology in general, and more efficient therapeutic approaches to treat IBD.


Assuntos
Compartimento Celular/imunologia , Células Epiteliais/imunologia , Doenças Inflamatórias Intestinais/imunologia , Intestinos/patologia , Leucócitos/imunologia , Células-Tronco Mesenquimais/imunologia , Animais , Humanos
3.
J Dev Orig Health Dis ; 11(3): 264-272, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31543090

RESUMO

Iron deficiency is common in pregnant and lactating women and is associated with reduced cognitive development of the offspring. Since iron affects lipid metabolism, the availability of fatty acids, particularly the polyunsaturated fatty acids required for early neural development, was investigated in the offspring of female rats fed iron-deficient diets during gestation and lactation. Subsequent to the dams giving birth, one group of iron-deficient dams was recuperated by feeding an iron-replete diet. Dams and neonates were killed on postnatal days 1, 3 and 10, and the fatty acid composition of brain and stomach contents was assessed by gas chromatography. Changes in the fatty acid profile on day 3 became more pronounced on day 10 with a decrease in the proportion of saturated fatty acids and a compensatory increase in monounsaturated fatty acids. Long-chain polyunsaturated fatty acids in the n-6 family were reduced, but there was no change in the n-3 family. The fatty acid profiles of neonatal brain and stomach contents were similar, suggesting that the change in milk composition may be related to the changes in the neonatal brain. When the dams were fed an iron-sufficient diet at birth, the effects of iron deficiency on the fatty acid composition of lipids in both dam's milk and neonates' brains were reduced. This study showed an interaction between maternal iron status and fatty acid composition of the offspring's brain and suggests that these effects can be reduced by iron repletion of the dam's diet at birth.


Assuntos
Anemia Ferropriva/complicações , Encéfalo/crescimento & desenvolvimento , Metabolismo dos Lipídeos/fisiologia , Complicações Hematológicas na Gravidez/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Anemia Ferropriva/fisiopatologia , Animais , Animais Recém-Nascidos/metabolismo , Animais Lactentes/metabolismo , Encéfalo/patologia , Química Encefálica/fisiologia , Modelos Animais de Doenças , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/análise , Ácidos Graxos Ômega-6/metabolismo , Feminino , Humanos , Ferro/sangue , Deficiências de Ferro , Lactação/fisiologia , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos
4.
J Crohns Colitis ; 14(7): 948-961, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31796949

RESUMO

BACKGROUND AND AIMS: Endoplasmic reticulum [ER] stress in intestinal epithelial cells [IECs] contributes to the pathogenesis of inflammatory bowel disease [IBD]. We hypothesized that ER stress changes innate signalling in human IECs, augmenting toll-like receptor [TLR] responses and inducing pro-inflammatory changes in underlying dendritic cells [DCs]. METHODS: Caco-2 cells and primary human colon-derived enteroid monolayers were exposed to ATP [control stressor] or thapsigargin [Tg] [ER stress inducer], and were stimulated with the TLR5 agonist flagellin. Cytokine release was measured by an enzyme immunoassay. ER stress markers CHOP, GRP78 and XBP1s/u were measured via quantitative PCR and Western blot. Monocyte-derived DCs [moDCs] were cultured with the IEC supernatants and their activation state was measured. Responses from enteroids derived from IBD patients and healthy control participants were compared. RESULTS: ER stress enhanced flagellin-induced IL-8 release from Caco-2 cells and enteroids. Moreover, conditioned media activated DCs to become pro-inflammatory, with increased expression of CD80, CD86, MHCII, IL-6, IL-15 and IL-12p70 and decreased expression of CD103 and IL-10. Flagellin-induced IL-8 production correlated with DC activation, suggesting a common stress pathway. Moreover, there were distinct differences in cytokine expression and basal ER stress between IBD and healthy subject-derived enteroid monolayers, suggesting a dysregulated ER stress pathway in IBD-derived enteroids. CONCLUSIONS: Cellular stress enhances TLR5 responses in IECs, leading to increased DC activation, indicating a previously unknown mechanistic link between epithelial ER stress and immune activation in IBD. Furthermore, dysregulated ER stress may be propagated from the intestinal epithelial stem cell niche in IBD patients.


Assuntos
Citocinas/metabolismo , Células Dendríticas/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Doenças Inflamatórias Intestinais/fisiopatologia , Mucosa Intestinal/fisiopatologia , Receptor 5 Toll-Like/metabolismo , Trifosfato de Adenosina/farmacologia , Antígenos CD/metabolismo , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Células CACO-2 , Diferenciação Celular , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Colo/patologia , Meios de Cultivo Condicionados/farmacologia , Citocinas/genética , Células Dendríticas/efeitos dos fármacos , Retículo Endoplasmático/fisiologia , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Flagelina/farmacologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Cadeias alfa de Integrinas/metabolismo , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Interleucina-15/metabolismo , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Lactonas/farmacologia , Organoides/metabolismo , RNA Mensageiro/metabolismo , Sesquiterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor 5 Toll-Like/genética , Fator de Necrose Tumoral alfa/metabolismo
5.
Environ Int ; 124: 98-108, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30641261

RESUMO

BACKGROUND: The increased incidence of diseases, including metabolic syndrome and infertility, may be related to exposure to the mixture of chemicals, which are ubiquitous in the modern environment (environmental chemicals, ECs). Xeno-detoxification occurs within the liver which is also the source of many plasma proteins and growth factors and plays an important role in the regulation of homeostasis. OBJECTIVES: The objective of this study was to investigate the effects of ECs on aspects of liver function, in a well characterized ovine model of exposure to a real-life EC mixture. METHODS: Four groups of sheep (n = 10-12/sex/treatment) were maintained long-term on control or sewage sludge-fertilized pastures: from conception to culling at 19 months of age in females and from conception to 7 months of age and thereafter in control plots until culling at 19 months of age in males. Environmental chemicals were measured in sheep livers and RNA and protein extracts were assessed for exposure markers. Liver proteins were resolved using 2D differential in-gel electrophoresis and differentially expressed protein spots were identified by liquid chromatography/tandem mass spectroscopy. RESULTS: Higher levels of polycyclic aromatic hydrocarbons (PAHs) and lower levels of polychlorinated biphenyls (PCBs) in the livers of control males compared to control females indicated sexually dimorphic EC body burdens. Increased levels of the PAHs Benzo[a]anthracene and chrysene and reduced levels of PCB 153 and PCB 180 were observed in the livers of continuously exposed females. EC exposure affected xenobiotic and detoxification responses and the liver proteome in both sexes and included major plasma-secreted and blood proteins, and metabolic enzymes whose pathway analysis predicted dysregulation of cancer-related pathways and altered lipid dynamics. The latter were confirmed by a reduction in total lipids in female livers and up-regulation of cancer-related transcript markers in male livers respectively by sewage sludge exposure. CONCLUSIONS: Our results demonstrate that chronic exposure to ECs causes major physiological changes in the liver, likely to affect multiple systems in the body and which may predispose individuals to increased disease risks.


Assuntos
Biomarcadores Tumorais/biossíntese , Exposição Ambiental , Poluentes Ambientais/toxicidade , Fertilizantes , Fígado/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Esgotos , Animais , Feminino , Metabolismo dos Lipídeos , Fígado/química , Masculino , Bifenilos Policlorados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Esgotos/química , Fatores Sexuais , Ovinos
6.
Eur J Immunol ; 48(3): 398-406, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29272036

RESUMO

Clostridium difficile infection (CDI) is one of the most important nosocomial illnesses and a major cause of morbidity and mortality. While initial treatment of CDI is usually successful, unprovoked relapses remain an important and frustrating problem. This review examines the literature describing the natural immune response to CDI, and to what extent it can explain the propensity for relapses. In particular, we discuss studies on antibody and, to a lesser extent, B cell and T cell responses in CDI. Despite years of study, there remains incomplete understanding of the natural antibody response to the major pathogenic toxins, TcdA and TcdB, and other bacterial antigens, in CDI. Recent literature suggests that a specific subset of neutralizing antibodies that target the putative carbohydrate-binding domains of TcdB and possibly TcdA have the greatest protective ability. This is further supported by recent successful clinical trials of a humanized monoclonal antibody to the major toxin TcdB. A better understanding of how and why the most protective adaptive immune response develops may lead to improved vaccine and therapeutic targets for recurrent CDI.


Assuntos
Imunidade Adaptativa , Infecções por Clostridium/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Proteínas de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Portador Sadio/imunologia , Infecções por Clostridium/terapia , Modelos Animais de Doenças , Enterotoxinas/imunologia , Humanos , Memória Imunológica , Imunoterapia , Camundongos , Recidiva , Prevenção Secundária , Linfócitos T/imunologia , Vacinação
7.
Physiol Rep ; 4(21)2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27905292

RESUMO

Iron is essential for the oxidative metabolism of lipids. Lipid metabolism changes during gestation to meet the requirements of the growing fetus and to prepare for lactation. The temporal effects of iron deficiency during gestation were studied in female rats fed complete or iron-deficient diets. Plasma triglycerides were elevated in the iron-deficient group throughout gestation. There were time-dependent changes in the triglyceride content of the maternal liver, falling at the midpoint of gestation and then increasing on d21.5. Compared to the control, triglycerides in the maternal liver were not different in the iron-deficient group prior to pregnancy and on d12.5, but were markedly reduced by d21.5. The abundance of mRNAs in the maternal liver suggests that lipogenesis is unchanged and beta-oxidation is reduced on d21.5 by iron deficiency. On d21.5 of gestation, the expression of placental lipase was unchanged by iron deficiency, however, the abundance of mRNAs for SREBP-1c, FABP4 were reduced, suggesting that there were changes in fatty acid handling. In the fetal liver, iron deficiency produced a marked decrease in the abundance of the L-CPT-1 mRNA, suggesting that beta-oxidation is reduced. This study shows that the major effect of iron deficiency on maternal lipid metabolism occurs late in gestation and that perturbed lipid metabolism may be a common feature of models of fetal programming.


Assuntos
Desenvolvimento Fetal/fisiologia , Deficiências de Ferro , Ferro/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Fenômenos Fisiológicos da Nutrição Pré-Natal/genética , Triglicerídeos/sangue , Animais , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Feto/metabolismo , Ferro/efeitos adversos , Lactação/fisiologia , Lipogênese/fisiologia , Fígado/embriologia , Fígado/enzimologia , Placenta/enzimologia , Placenta/metabolismo , Gravidez/metabolismo , RNA Mensageiro/metabolismo , Ratos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
8.
Am J Physiol Endocrinol Metab ; 302(12): E1531-40, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22454289

RESUMO

Although the importance of methyl metabolism in fetal development is well recognized, there is limited information on the dynamics of methionine flow through maternal and fetal tissues and on how this is related to circulating total homocysteine concentrations. Rates of homocysteine remethylation in maternal and fetal tissues on days 11, 19, and 21 of gestation were measured in pregnant rats fed diets with limiting or surplus amounts of folic acid and choline at two levels of methionine and then infused with L-[1-(13)C,(2)H(3)-methyl]methionine. The rate of homocysteine remethylation was highest in maternal liver and declined as gestation progressed. Diets deficient in folic acid and choline reduced the production of methionine from homocysteine in maternal liver only in the animals fed a methionine-limited diet. Throughout gestation, the pancreas exported homocysteine for methylation within other tissues. Little or no methionine cycle activity was detected in the placenta at days 19 and 21 of gestation, but, during this period, fetal tissues, especially the liver, synthesized methionine from homocysteine. Greater enrichment of homocysteine in maternal plasma than placenta, even in animals fed the most-deficient diets, shows that the placenta did not contribute homocysteine to maternal plasma. Methionine synthesis from homocysteine in fetal tissues was maintained or increased when the dams were fed folate- and choline-deficient methionine-restricted diets. This study shows that methyl-deficient diets decrease the remethylation of homocysteine within maternal tissues but that these rates are protected to some extent within fetal tissues.


Assuntos
Dieta , Homocisteína/metabolismo , Metionina/metabolismo , Metilação , Animais , Colina/metabolismo , Colina/farmacologia , Cisteína/metabolismo , Feminino , Feto/metabolismo , Ácido Fólico/metabolismo , Ácido Fólico/farmacologia , Cinética , Tamanho da Ninhada de Vivíparos , Fígado/metabolismo , Metionina/análogos & derivados , Metionina/farmacologia , Pâncreas/metabolismo , Fosforilcolina/metabolismo , Placenta/metabolismo , Gravidez , Ratos , Triglicerídeos/metabolismo , Aumento de Peso/efeitos dos fármacos
9.
J Nutr ; 136(6 Suppl): 1701S-1705S, 2006 06.
Artigo em Inglês | MEDLINE | ID: mdl-16702342

RESUMO

Animal studies show that the balance of methionine relative to other amino acids in the maternal diet is critical, as fetal growth is not only retarded by diets that are deficient but also by those containing excess. Diets with an inappropriate balance of methionine can adversely affect both short-term reproductive function and the long-term physiology of the offspring. The catabolism of unused methionine increases the demand for glycine and may cause a deficiency. High levels of methionine may also perturb intracellular S-adenosyl methionine pools and have an effect on the methylation of DNA and proteins. Excess methionine in the diet may also indirectly influence fetal development through the production of homocysteine or by the perturbation of endocrine functions. The metabolic interactions among dietary methionine, folic acid, and choline mean that other diet components can also change the methionine requirement.


Assuntos
Aminoácidos Sulfúricos/metabolismo , Dieta , Fenômenos Fisiológicos da Nutrição Materna , Metionina/administração & dosagem , Animais , Colina/administração & dosagem , Metilação de DNA , Interações Medicamentosas , Sistema Endócrino/efeitos dos fármacos , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Ácido Fólico/administração & dosagem , Homocisteína/biossíntese , Humanos , Metionina/metabolismo , Metilação , Necessidades Nutricionais , Gravidez , Proteínas/metabolismo , S-Adenosilmetionina/biossíntese , S-Adenosilmetionina/metabolismo
10.
J Nutr ; 132(8): 2137-42, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12163652

RESUMO

The flow of amino acids to both protein and DNA synthesis is particularly important during periods of rapid cell proliferation such as the fetal stages of life. The changes in mRNA levels caused by the different types of growth arrest were studied in F9 embryonal carcinoma cells. The cells were grown in medium deficient in the amino acid lysine or in one containing phosphonoacetyl L-aspartic acid (PALA), which inhibits the incorporation of aspartic acid into pyrimidine nucleotides. A number of mRNAs known to be elevated in growth arrested cells (gas and gadd) were studied by Northern blotting. Samples of RNA from the cells were also compared by differential display reverse transcription-polymerase chain reaction (DDRT-PCR). The results showed that lysine deficiency increased the steady-state levels of a number of mRNAs by 5- to 40-fold. In contrast, the changes in cells treated with PALA were much smaller and less pronounced. Amino acid deficiency induced the mRNAs coding for gadd153 (CHOP-10), gas5, the mouse doublesex-related gene (Dmrt1) and the polyamine modulated factor (PA-1) as well as a number of unidentified expressed sequence tags (EST). These mRNAs were all induced within 24 h of exposure to amino acid deficiency. These very different transcriptional responses may be important in understanding the interactions between protein quantity and quality in different physiologic situations.


Assuntos
Aminoácidos/deficiência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Animais , Sequência de Bases , Carcinoma Embrionário , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
11.
Proc Nutr Soc ; 61(1): 71-7, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12002797

RESUMO

Epidemiological studies of human populations show that poor growth in utero predisposes an individual to the later development of type 2 (non-insulin-dependent) diabetes mellitus and hypertension in adulthood. This phenomenon is not confined to man; feeding pregnant rats diets moderately deficient in protein has a similar effect, programming the adult blood pressure and glucose metabolism of the offspring. A restriction in the amino acid supply was thought to cause poor fetal growth. However, recent experiments have shown that this is not the case and instead have implicated the metabolism of the S-containing amino acids. Many semi-synthetic experimental diets contain an imbalance in S-containing amino acids, forcing the animal to synthesise a sizeable part of its cysteine requirement from methionine. Unfortunately, when the diet is low in protein, the oxidation of amino acids is reduced, perturbing methionine metabolism and increasing levels of homocysteine. It is this interaction between protein content and composition of the diet which influences neonatal viability and may also determine the long-term health of the offspring. An excess of homocysteine is known to affect levels of two of the main mediators of cellular methylation reactions, S-adenosyl methionine and methylene tetrahydrofolate. S-adenosyl methionine is the methyl donor for the methylation of newly-synthesised DNA, regulating chromatin assembly and gene expression. The balance between S-adenosyl methionine and the methylated derivatives of folic acid may be critical for the development of differentiating cells and the long-term regulation of gene expression.


Assuntos
Aminoácidos Sulfúricos/metabolismo , Proteínas Alimentares/administração & dosagem , Efeitos Tardios da Exposição Pré-Natal , Deficiência de Proteína/metabolismo , Aminoácidos Sulfúricos/administração & dosagem , Animais , Proteínas Alimentares/metabolismo , Desenvolvimento Embrionário e Fetal , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Homocisteína/metabolismo , Humanos , Metionina/metabolismo , Necessidades Nutricionais , Gravidez , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA