Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res Treat ; 201(1): 43-56, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37318638

RESUMO

PURPOSE: Metastatic hormone receptor-positive (HR+) breast cancer initially responds to serial courses of endocrine therapy, but ultimately becomes refractory. Elacestrant, a new generation FDA-approved oral selective estrogen receptor degrader (SERD) and antagonist, has demonstrated efficacy in a subset of women with advanced HR+breast cancer, but there are few patient-derived models to characterize its effect in advanced cancers with diverse treatment histories and acquired mutations. METHODS: We analyzed clinical outcomes with elacestrant, compared with endocrine therapy, among women who had previously been treated with a fulvestrant-containing regimen from the recent phase 3 EMERALD Study. We further modeled sensitivity to elacestrant, compared with the currently approved SERD, fulvestrant in patient-derived xenograft (PDX) models and cultured circulating tumor cells (CTCs). RESULTS: Analysis of the subset of breast cancer patients enrolled in the EMERALD study who had previously received a fulvestrant-containing regimen indicates that they had better progression-free survival with elacestrant than with standard-of-care endocrine therapy, a finding that was independent estrogen receptor (ESR1) gene mutations. We modeled elacestrant responsiveness using patient-derived xenograft (PDX) models and in ex vivo cultured CTCs derived from patients with HR+breast cancer extensively treated with multiple endocrine therapies, including fulvestrant. Both CTCs and PDX models are refractory to fulvestrant but sensitive to elacestrant, independent of mutations in ESR1 and Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha (PIK3CA) genes. CONCLUSION: Elacestrant retains efficacy in breast cancer cells that have acquired resistance to currently available ER targeting therapies. Elacestrant may be an option for patients with HR+/HER2- breast cancer whose disease progressed on fulvestrant in the metastatic setting. TRANSLATIONAL RELEVANCE: Serial endocrine therapy is the mainstay of management for metastatic HR+breast cancer, but acquisition of drug resistance highlights the need for better therapies. Elacestrant is a recently FDA-approved novel oral selective estrogen receptor degrader (SERD), with demonstrated efficacy in the EMERALD phase 3 clinical trial of refractory HR+breast cancer. Subgroup analysis of the EMERALD clinical trial identifies clinical benefit with elacestrant in patients who had received prior fulvestrant independent of the mutational status of the ESR1 gene, supporting its potential utility in treating refractory HR+breast cancer. Here, we use pre-clinical models, including ex vivo cultures of circulating tumor cells and patient-derived xenografts, to demonstrate the efficacy of elacestrant in breast cancer cells with acquired resistance to fulvestrant.


Assuntos
Neoplasias da Mama , Células Neoplásicas Circulantes , Animais , Humanos , Feminino , Fulvestranto , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptores de Estrogênio , Antagonistas de Estrogênios/uso terapêutico , Modelos Animais de Doenças , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
2.
Cell ; 186(13): 2765-2782.e28, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37327786

RESUMO

Cancer is characterized by hypomethylation-associated silencing of large chromatin domains, whose contribution to tumorigenesis is uncertain. Through high-resolution genome-wide single-cell DNA methylation sequencing, we identify 40 core domains that are uniformly hypomethylated from the earliest detectable stages of prostate malignancy through metastatic circulating tumor cells (CTCs). Nested among these repressive domains are smaller loci with preserved methylation that escape silencing and are enriched for cell proliferation genes. Transcriptionally silenced genes within the core hypomethylated domains are enriched for immune-related genes; prominent among these is a single gene cluster harboring all five CD1 genes that present lipid antigens to NKT cells and four IFI16-related interferon-inducible genes implicated in innate immunity. The re-expression of CD1 or IFI16 murine orthologs in immuno-competent mice abrogates tumorigenesis, accompanied by the activation of anti-tumor immunity. Thus, early epigenetic changes may shape tumorigenesis, targeting co-located genes within defined chromosomal loci. Hypomethylation domains are detectable in blood specimens enriched for CTCs.


Assuntos
Metilação de DNA , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Carcinogênese/genética , DNA , Epigênese Genética , Neoplasias da Próstata/genética , Células Neoplásicas Circulantes
3.
Mol Cell ; 81(19): 4041-4058.e15, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34624217

RESUMO

Deregulation of oncogenic signals in cancer triggers replication stress. Immediate early genes (IEGs) are rapidly and transiently expressed following stressful signals, contributing to an integrated response. Here, we find that the orphan nuclear receptor NR4A1 localizes across the gene body and 3' UTR of IEGs, where it inhibits transcriptional elongation by RNA Pol II, generating R-loops and accessible chromatin domains. Acute replication stress causes immediate dissociation of NR4A1 and a burst of transcriptionally poised IEG expression. Ectopic expression of NR4A1 enhances tumorigenesis by breast cancer cells, while its deletion leads to massive chromosomal instability and proliferative failure, driven by deregulated expression of its IEG target, FOS. Approximately half of breast and other primary cancers exhibit accessible chromatin domains at IEG gene bodies, consistent with this stress-regulatory pathway. Cancers that have retained this mechanism in adapting to oncogenic replication stress may be dependent on NR4A1 for their proliferation.


Assuntos
Neoplasias da Mama/metabolismo , Proliferação de Células , Proteínas Imediatamente Precoces/metabolismo , Mitose , Células Neoplásicas Circulantes/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Regiões 3' não Traduzidas , Animais , Antineoplásicos/farmacologia , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Montagem e Desmontagem da Cromatina , Feminino , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Células HEK293 , Humanos , Proteínas Imediatamente Precoces/genética , Indóis/farmacologia , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos SCID , Mitose/efeitos dos fármacos , Células Neoplásicas Circulantes/efeitos dos fármacos , Células Neoplásicas Circulantes/patologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/antagonistas & inibidores , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Fenilacetatos/farmacologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estruturas R-Loop , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transdução de Sinais , Elongação da Transcrição Genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Clin Cancer Res ; 26(18): 4852-4862, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32571788

RESUMO

PURPOSE: Plasma genotyping may identify mutations in potentially "actionable" cancer genes, such as BRCA1/2, but their clinical significance is not well-defined. We evaluated the characteristics of somatically acquired BRCA1/2 mutations in patients with metastatic breast cancer (MBC). EXPERIMENTAL DESIGN: Patients with MBC undergoing routine cell-free DNA (cfDNA) next-generation sequencing (73-gene panel) before starting a new therapy were included. Somatic BRCA1/2 mutations were classified as known germline pathogenic mutations or novel variants, and linked to clinicopathologic characteristics. The effect of the PARP inhibitor, olaparib, was assessed in vitro, using cultured circulating tumor cells (CTCs) from a patient with a somatically acquired BRCA1 mutation and a second patient with an acquired BRCA2 mutation. RESULTS: Among 215 patients with MBC, 29 (13.5%) had somatic cfDNA BRCA1/2 mutations [nine (4%) known germline pathogenic and rest (9%) novel variants]. Known germline pathogenic BRCA1/2 mutations were common in younger patients (P = 0.008), those with triple-negative disease (P = 0.022), and they were more likely to be protein-truncating alterations and be associated with TP53 mutations. Functional analysis of a CTC culture harboring a somatic BRCA1 mutation demonstrated high sensitivity to PARP inhibition, while another CTC culture harboring a somatic BRCA2 mutation showed no differential sensitivity. Across the entire cohort, APOBEC mutational signatures (COSMIC Signatures 2 and 13) and the "BRCA" mutational signature (COSMIC Signature 3) were present in BRCA1/2-mutant and wild-type cases, demonstrating the high mutational burden associated with advanced MBC. CONCLUSIONS: Somatic BRCA1/2 mutations are readily detectable in MBC by cfDNA analysis, and may be present as both known germline pathogenic and novel variants.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , DNA Tumoral Circulante/genética , Idoso , Neoplasias da Mama/sangue , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , DNA Tumoral Circulante/sangue , Análise Mutacional de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Mutação , Células Neoplásicas Circulantes/patologia , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Estudos Retrospectivos , Sequenciamento do Exoma
5.
NPJ Precis Oncol ; 3: 18, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31341951

RESUMO

Plasma genotyping identifies potentially actionable mutations at variable mutant allele frequencies, often admixed with multiple subclonal variants, highlighting the need for their clinical and functional validation. We prospectively monitored plasma genotypes in 143 women with endocrine-resistant metastatic breast cancer (MBC), identifying multiple novel mutations including HER2 mutations (8.4%), albeit at different frequencies highlighting clinical heterogeneity. To evaluate functional significance, we established ex vivo culture from circulating tumor cells (CTCs) from a patient with HER2-mutant MBC, which revealed resistance to multiple targeted therapies including endocrine and CDK 4/6 inhibitors, but high sensitivity to neratinib (IC50: 0.018 µM). Immunoblotting analysis of the HER2-mutant CTC culture line revealed high levels of HER2 expression at baseline were suppressed by neratinib, which also abrogated downstream signaling, highlighting oncogenic dependency with HER2 mutation. Furthermore, treatment of an index patient with HER2-mutant MBC with the irreversible HER2 inhibitor neratinib resulted in significant clinical response, with complete molecular resolution of two distinct clonal HER2 mutations, with persistence of other passenger subclones, confirming HER2 alteration as a driver mutation. Thus, driver HER2 mutant alleles that emerge during blood-based monitoring of endocrine-resistant MBC confer novel therapeutic vulnerability, and ex vivo expansion of viable CTCs from the blood circulation may broadly complement plasma-based mutational analysis in MBC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA