Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Med Phys ; 48(10): e886-e921, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34101836

RESUMO

Small-field dosimetry used in advance treatment technologies poses challenges due to loss of lateral charged particle equilibrium (LCPE), occlusion of the primary photon source, and the limited choice of suitable radiation detectors. These challenges greatly influence dosimetric accuracy. Many high-profile radiation incidents have demonstrated a poor understanding of appropriate methodology for small-field dosimetry. These incidents are a cause for concern because the use of small fields in various specialized radiation treatment techniques continues to grow rapidly. Reference and relative dosimetry in small and composite fields are the subject of the International Atomic Energy Agency (IAEA) dosimetry code of practice that has been published as TRS-483 and an AAPM summary publication (IAEA TRS 483; Dosimetry of small static fields used in external beam radiotherapy: An IAEA/AAPM International Code of Practice for reference and relative dose determination, Technical Report Series No. 483; Palmans et al., Med Phys 45(11):e1123, 2018). The charge of AAPM task group 155 (TG-155) is to summarize current knowledge on small-field dosimetry and to provide recommendations of best practices for relative dose determination in small megavoltage photon beams. An overview of the issue of LCPE and the changes in photon beam perturbations with decreasing field size is provided. Recommendations are included on appropriate detector systems and measurement methodologies. Existing published data on dosimetric parameters in small photon fields (e.g., percentage depth dose, tissue phantom ratio/tissue maximum ratio, off-axis ratios, and field output factors) together with the necessary perturbation corrections for various detectors are reviewed. A discussion on errors and an uncertainty analysis in measurements is provided. The design of beam models in treatment planning systems to simulate small fields necessitates special attention on the influence of the primary beam source and collimating devices in the computation of energy fluence and dose. The general requirements for fluence and dose calculation engines suitable for modeling dose in small fields are reviewed. Implementations in commercial treatment planning systems vary widely, and the aims of this report are to provide insight for the medical physicist and guidance to developers of beams models for radiotherapy treatment planning systems.


Assuntos
Fótons , Radiometria , Agências Internacionais , Imagens de Fantasmas
2.
Med Phys ; 44(10): 5367-5377, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28703922

RESUMO

PURPOSE: X-ray-induced luminescence (XIL) is a hybrid x-ray/optical imaging modality that employs nanophosphors that luminescence in response to x-ray irradiation. X-ray-activated phosphorescent nanoparticles have potential applications in radiation therapy as theranostics, nanodosimeters, or radiosensitizers. Extracting clinically relevant information from the luminescent signal requires the development of a robust imaging model that can determine nanophosphor distributions at depth in an optically scattering environment from surface radiance measurements. The applications of XIL in radiotherapy will be limited by the dose-dependent sensitivity at depth in tissue. We propose a novel geometry called selective plane XIL (SPXIL), and apply it to experimental measurements in optical gel phantoms and sensitivity simulations. METHODS: An imaging model is presented based on the selective plane geometry which can determine the detected diffuse optical signal for a given x-ray dose and nanophosphor distribution at depth in a semi-infinite, optically homogenous material. The surface radiance in the model is calculated using an analytical solution to the extrapolated boundary condition. Y2 O3 :Eu3+ nanoparticles are synthesized and inserted into various optical phantom in order to measure the luminescent output per unit dose for a given concentration of nanophosphors and calibrate an imaging model for XIL sensitivity simulations. SPXIL imaging with a dual-source optical gel phantom is performed, and an iterative Richardson-Lucy deconvolution using a shifted Poisson noise model is applied to the measurements in order to reconstruct the nanophosphor distribution. RESULTS: Nanophosphor characterizations showed a peak emission at 611 nm, a linear luminescent response to tube current and nanoparticle concentration, and a quadratic luminescent response to tube voltage. The luminescent efficiency calculation accomplished with calibrated bioluminescence mouse phantoms determines 1.06 photons were emitted per keV of x-ray radiation absorbed per g/mL of nanophosphor concentration. Sensitivity simulations determined that XIL could detect a concentration of 1 mg/mL of nanophosphors with a dose of 1 cGy at a depth ranging from 2 to 4 cm, depending on the optical parameters of the homogeneous diffuse optical environment. The deconvolution applied to the SPXIL measurements could resolve two sources 1 cm apart up to a depth of 1.75 cm in the diffuse phantom. CONCLUSIONS: We present a novel imaging geometry for XIL in a homogenous, diffuse optical environment. Basic characterization of Y2 O3 :Eu3+ nanophosphors are presented along with XIL/SPXIL measurements in optical gel phantoms. The diffuse optical imaging model is validated using these measurements and then calibrated in order to execute initial sensitivity simulations for the dose-depth limitations of XIL imaging. The SPXIL imaging model is used to perform a deconvolution on a dual-source phantom, which successfully reconstructs the nanophosphor distributions.


Assuntos
Luminescência , Imagem Óptica/métodos , Calibragem , Nanopartículas , Imagens de Fantasmas , Razão Sinal-Ruído , Raios X
4.
Med Phys ; 37(5): 2300-11, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20527564

RESUMO

Medical products (devices, drugs, or biologics) contain information in their labeling regarding the manner in which the manufacturer has determined that the products can be used in a safe and effective manner. The Food and Drug Administration (FDA) approves medical products for use for these specific indications which are part of the medical product's labeling. When medical products are used in a manner not specified in the labeling, it is commonly referred to as off-label use. The practice of medicine allows for this off-label use to treat individual patients, but the ethical and legal implications for such unapproved use can be confusing. Although the responsibility and, ultimately, the liability for off-label use often rests with the prescribing physician, medical physicists and others are also responsible for the safe and proper use of the medical products. When these products are used for purposes other than which they were approved, it is important for medical physicists to understand their responsibilities. In the United States, medical products can only be marketed if officially cleared, approved, or licensed by the FDA; they can be used if they are not subject to or specifically exempt from FDA regulations, or if they are being used in research with the appropriate regulatory safeguards. Medical devices are either cleared or approved by FDA's Center for Devices and Radiological Health. Drugs are approved by FDA's Center for Drug Evaluation and Research, and biological products such as vaccines or blood are licensed under a biologics license agreement by FDA's Center for Biologics Evaluation and Research. For the purpose of this report, the process by which the FDA eventually clears, approves, or licenses such products for marketing in the United States will be referred to as approval. This report summarizes the various ways medical products, primarily medical devices, can legally be brought to market in the United States, and includes a discussion of the approval process, along with manufacturers' responsibilities, labeling, marketing and promotion, and off-label use. This is an educational and descriptive report and does not contain prescriptive recommendations. This report addresses the role of the medical physicist in clinical situations involving off-label use. Case studies in radiation therapy are presented. Any mention of commercial products is for identification only; it does not imply recommendations or endorsements of any of the authors or the AAPM. The full report, containing extensive background on off-label use with several appendices, is available on the AAPM website (http://www.aapm.org/pubs/reports/).


Assuntos
Comitês Consultivos , Equipamentos e Provisões , Uso Off-Label/legislação & jurisprudência , Radioterapia/instrumentação , Sociedades Científicas , United States Food and Drug Administration/legislação & jurisprudência , Braquiterapia/instrumentação , Humanos , Responsabilidade Legal , Microesferas , Neoplasias/terapia , Uso Off-Label/estatística & dados numéricos , Mecanismo de Reembolso/legislação & jurisprudência , Estados Unidos
5.
Med Phys ; 36(5): 1690-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19544786

RESUMO

Optically stimulated luminescent detectors, which are widely used in radiation protection, offer a number of potential advantages for application in radiation therapy dosimetry. Their introduction into this field has been somewhat hampered by the lack of information on their radiation response in megavoltage beams. Here the response of a commercially available optically stimulated luminescent detector (OSLD) is determined as a function of energy, absorbed dose to water, and linear energy transfer (LET). The detector response was measured as a function of energy for absorbed doses from 0.5 to 4.0 Gy over the following ranges: 125 kVp to 18 MV for photons, 6-20 MeV for electrons, 50-250 MeV for protons, and 290 MeV/u for the carbon ions. For the low LET beams, the response of the detector was linear up to 2 Gy with supralinearity occurring at higher absorbed doses. For the kilovoltage photons, the detector response relative to 6 MV increased with decreasing energy due to the higher atomic number of aluminum oxide (11.2) relative to water (7.4). For the megavoltage photons and electrons, the response was independent of energy. The response for protons was also independent of energy, but it was about 6% higher than its response to 6 MV photons. For the carbon ions, the dose response was linear for a given LET from 0.5 to 4.0 Gy, and no supralinearity was observed. However, it did exhibit LET dependence on the response relative to 6 MV photons decreasing from 1.02 at 1.3 keV/microm to 0.41 at 78 keV/microm. These results provide additional information on the dosimetric properties for this particular OSL detector and also demonstrate the potential for their use in photon, electron, and proton radiotherapy dosimetry with a more limited use in high LET radiotherapy dosimetry.


Assuntos
Isótopos de Carbono/análise , Medições Luminescentes/instrumentação , Dispositivos Ópticos , Dosimetria Termoluminescente/instrumentação , Desenho Assistido por Computador , Relação Dose-Resposta à Radiação , Elétrons , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Fótons , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Phys Med Biol ; 54(5): N75-82, 2009 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-19182327

RESUMO

A novel intensity-modulated radiation therapy (IMRT) phantom for use in three-dimensional in vitro cell experiments, based on a commercially available system (CIRS Inc., Norfolk, VA), was designed and fabricated. The water-equivalent plastic phantom can, with a set of water-equivalent plastic inserts, enclose 1-3 multi-well tissue culture plates. Dosimetry within the phantom was assessed using thermoluminescence dosimeters (TLDs) and film. The phantom was loaded with three tissue culture plates, and an array of TLDs or a set of three films was placed underneath each plate within the phantom, and then irradiated using an IMRT plan created for it. Measured doses from each dosimeter were compared to those acquired from the treatment planning system. The percent differences between TLD measurements and the corresponding points in the treatment plan ranged from 1.3% to 2.9%, differences which did not show statistical significance. Average point-by-point percent dose differences for each film plane ranged from 1.6% to 3.1%. The percentage dose difference for which 95% of the points in the film matched those corresponding to the calculated dose plane to within 3.0% ranged from 2.8% to 4.2%. The good agreement between predicted and measured dose shows that the phantom is a useful and efficient tool for three-dimensional in vitro cell experiments.


Assuntos
Imagens de Fantasmas , Radioterapia de Intensidade Modulada/métodos , Células Cultivadas , Radioterapia de Intensidade Modulada/instrumentação
7.
Med Phys ; 33(10): 3734-42, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17089839

RESUMO

For intensity modulated radiation therapy (IMRT) treatments 6 MV photons are typically used, however, for deep seated tumors in the pelvic region, higher photon energies are increasingly being employed. IMRT treatments require more monitor units (MU) to deliver the same dose as conformal treatments, causing increased secondary radiation to tissues outside the treated area from leakage and scatter, as well as a possible increase in the neutron dose from photon interactions in the machine head. Here we provide in vivo patient and phantom measurements of the secondary out-of-field photon radiation and the neutron dose equivalent for 18 MV IMRT treatments. The patients were treated for prostate cancer with 18 MV IMRT at institutions using different therapy machines and treatment planning systems. Phantom exposures at the different facilities were used to compare the secondary photon and neutron dose equivalent between typical IMRT delivered treatment plans with a six field three-dimensional conformal radiotherapy (3DCRT) plan. For the in vivo measurements LiF thermoluminescent detectors (TLDs) and Al2O3 detectors using optically stimulated radiation were used to obtain the photon dose and CR-39 track etch detectors were used to obtain the neutron dose equivalent. For the phantom measurements a Bonner sphere (25.4 cm diameter) containing two types of TLDs (TLD-600 and TLD-700) having different thermal neutron sensitivities were used to obtain the out-of-field neutron dose equivalent. Our results showed that for patients treated with 18 MV IMRT the photon dose equivalent is greater than the neutron dose equivalent measured outside the treatment field and the neutron dose equivalent normalized to the prescription dose varied from 2 to 6 mSv/Gy among the therapy machines. The Bonner sphere results showed that the ratio of neutron equivalent doses for the 18 MV IMRT and 3DCRT prostate treatments scaled as the ratio of delivered MUs. We also observed differences in the measured neutron dose equivalent among the three therapy machines for both the in vivo and phantom exposures.


Assuntos
Nêutrons , Fótons , Neoplasias da Próstata/radioterapia , Radioterapia de Intensidade Modulada/métodos , Óxido de Alumínio/química , Humanos , Masculino , Imagens de Fantasmas , Radiometria , Planejamento da Radioterapia Assistida por Computador , Radioterapia Conformacional/métodos , Dosimetria Termoluminescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA