Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612413

RESUMO

Cancers reprogram macrophages (MΦs) to a tumor-growth-promoting TAM (tumor-associated MΦ) phenotype that is similar to the anti-inflammatory M2 phenotype. Poly(ADP-ribose) polymerase (PARP) enzymes regulate various aspects of MΦ biology, but their role in the development of TAM phenotype has not yet been investigated. Here, we show that the multispectral PARP inhibitor (PARPi) PJ34 and the PARP14 specific inhibitor MCD113 suppress the expression of M2 marker genes in IL-4-polarized primary murine MΦs, in THP-1 monocytic human MΦs, and in primary human monocyte-derived MΦs. MΦs isolated from PARP14 knockout mice showed a limited ability to differentiate to M2 cells. In a murine model of TAM polarization (4T1 breast carcinoma cell supernatant transfer to primary MΦs) and in a human TAM model (spheroids formed from JIMT-1 breast carcinoma cells and THP-1-MΦs), both PARPis and the PARP14 KO phenotype caused weaker TAM polarization. Increased JIMT-1 cell apoptosis in co-culture spheroids treated with PARPis suggested reduced functional TAM reprogramming. Protein profiling arrays identified lipocalin-2, macrophage migration inhibitory factor, and plasminogen activator inhibitor-1 as potential (ADP-ribosyl)ation-dependent mediators of TAM differentiation. Our data suggest that PARP14 inhibition might be a viable anticancer strategy with a potential to boost anticancer immune responses by reprogramming TAMs.


Assuntos
Neoplasias da Mama , Macrófagos Associados a Tumor , Animais , Feminino , Humanos , Camundongos , Diferenciação Celular , Macrófagos , Camundongos Knockout , Poli(ADP-Ribose) Polimerases , Tamoxifeno
2.
Biomedicines ; 10(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35740393

RESUMO

Acute pancreatitis (AP) poses a worldwide challenge due to the growing incidence and its potentially life-threatening course and complications. Specific targeted therapies are not available, prompting the identification of new pathways and novel therapeutic approaches. Flavonoids comprise several groups of biologically active compounds with wide-ranging effects. The flavone compound, tricetin (TCT), has not yet been investigated in detail but sporadic reports indicate diverse biological activities. In the current study, we evaluated the potential protective effects of TCT in AP. TCT (30 µM) protected isolated primary murine acinar cells from the cytotoxic effects of cerulein, a cholecystokinin analog peptide. The protective effects of TCT were observed in a general viability assay (calcein ester hydrolysis), in an apoptosis assay (caspase activity), and in necrosis assays (propidium iodide uptake and lactate dehydrogenase release). The effects of TCT were not related to its potential antioxidant effects, as TCT did not protect against H2O2-induced acinar cell death despite possessing radical scavenging activity. Cerulein-induced expression of IL1ß, IL6, and matrix metalloproteinase 2 and activation of nuclear factor-κB (NFκB) were reduced by 30 µM TCT. In vivo experiments confirmed the protective effect of TCT in a mouse model of cerulein-induced AP. TCT suppressed edema formation and apoptosis in the pancreas and reduced lipase and amylase levels in the serum. Moreover, TCT inhibited interleukin-1ß (IL1ß), interleukin-6 (IL6), and tumor necrosis factor-α (TNFα) expression in the pancreas and reduced the activation of the oxidative DNA damage sensor enzyme poly(ADP-ribose) polymerase-1 (PARP-1). Our data indicate that TCT can be a potential treatment option for AP.

3.
Cancer Immunol Immunother ; 71(9): 2151-2168, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35066605

RESUMO

Despite recent advances in the development of novel personalized therapies, breast cancer continues to challenge physicians with resistance to various advanced therapies. The anticancer action of the anti-HER2 antibody, trastuzumab, involves antibody-dependent cell-mediated cytotoxicity (ADCC) by natural killer (NK) cells. Here, we report a repurposing screen of 774 clinically used compounds on NK-cell + trastuzumab-induced killing of JIMT-1 breast cancer cells. Using a calcein-based high-content screening (HCS) assay for the image-based quantitation of ADCC that we have developed and optimized for this purpose, we have found that the multitargeted tyrosine kinase inhibitor sunitinib inhibits ADCC in this model. The cytoprotective effect of sunitinib was also confirmed with two other assays (lactate dehydrogenase release, and electric cell substrate impedance sensing, ECIS). The drug suppressed NK cell activation as indicated by reduced granzyme B deposition on to the target cells and inhibition of interferon-γ production by the NK cells. Moreover, sunitinib induced downregulation of HER2 on the target cells' surface, changed the morphology and increased adherence of the target cells. Moreover, sunitinib also triggered the autophagy pathway (speckled LC3b) as an additional potential underlying mechanism of the cytoprotective effect of the drug. Sunitinib-induced ADCC resistance has been confirmed in a 3D tumor model revealing the prevention of apoptotic cell death (Annexin V staining) in JIMT-1 spheroids co-incubated with NK cells and trastuzumab. In summary, our HCS assay may be suitable for the facile identification of ADCC boosting compounds. Our data urge caution concerning potential combinations of ADCC-based immunotherapies and sunitinib.


Assuntos
Neoplasias da Mama , Citotoxicidade Celular Dependente de Anticorpos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-2/metabolismo , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico , Trastuzumab/farmacologia
4.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445574

RESUMO

Osteosarcoma is a frequent and extremely aggressive type of pediatric cancer. New therapeutic approaches are needed to improve the overall survival of osteosarcoma patients. Our previous results suggest that NMNAT1, a key enzyme in nuclear NAD+ synthesis, facilitates the survival of cisplatin-treated osteosarcoma cells. A high-throughput cytotoxicity screening was performed to identify novel pathways or compounds linked to the cancer-promoting role of NMNAT1. Nine compounds caused higher toxicity in the NMNAT1 KO U2OS cells compared to their wild type counterparts, and actinomycin D (ActD) was the most potent. ActD-treatment of NMNAT1 KO cells increased caspase activity and secondary necrosis. The reduced NAD+ content in NMNAT1 KO cells was further decreased by ActD, which partially inhibited NAD+-dependent enzymes, including the DNA nick sensor enzyme PARP1 and the NAD+-dependent deacetylase SIRT1. Impaired PARP1 activity increased DNA damage in ActD-treated NMNAT1 knockout cells, while SIRT1 impairment increased acetylation of the p53 protein, causing the upregulation of pro-apoptotic proteins (NOXA, BAX). Proliferation was decreased through both PARP- and SIRT-dependent pathways. On the one hand, PARP inhibitors sensitized wild type but not NMNAT1 KO cells to ActD-induced anti-clonogenic effects; on the other hand, over-acetylated p53 induced the expression of the anti-proliferative p21 protein leading to cell cycle arrest. Based on our results, NMNAT1 acts as a survival factor in ActD-treated osteosarcoma cells. By inhibiting both PARP1- and SIRT1-dependent cellular pathways, NMNAT1 inhibition can be a promising new tool in osteosarcoma chemotherapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/prevenção & controle , Dactinomicina/farmacologia , Regulação Neoplásica da Expressão Gênica , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Osteossarcoma/prevenção & controle , Antibióticos Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proliferação de Células , Humanos , Nicotinamida-Nucleotídeo Adenililtransferase/antagonistas & inibidores , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Células Tumorais Cultivadas
5.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808340

RESUMO

Chronic pancreatitis (CP) is an inflammatory disease of the pancreas characterized by ductal obstructions, tissue fibrosis, atrophy and exocrine and endocrine pancreatic insufficiency. However, our understanding is very limited concerning the disease's progression from a single acute inflammation, via recurrent acute pancreatitis (AP) and early CP, to the late stage CP. Poly(ADP-ribose) polymerase 1 (PARP1) is a DNA damage sensor enzyme activated mostly by oxidative DNA damage. As a co-activator of inflammatory transcription factors, PARP1 is a central mediator of the inflammatory response and it has also been implicated in acute pancreatitis. Here, we set out to investigate whether PARP1 contributed to the pathogenesis of CP. We found that the clinically used PARP inhibitor olaparib (OLA) had protective effects in a murine model of CP induced by multiple cerulein injections. OLA reduced pancreas atrophy and expression of the inflammatory mediators TNFα and interleukin-6 (IL-6), both in the pancreas and in the lungs. Moreover, there was significantly less fibrosis (Masson's trichrome staining) in the pancreatic sections of OLA-treated mice compared to the cerulein-only group. mRNA expression of the fibrosis markers TGFß, smooth muscle actin (SMA), and collagen-1 were markedly reduced by OLA. CP was also induced in PARP1 knockout (KO) mice and their wild-type (WT) counterparts. Inflammation and fibrosis markers showed lower expression in the KO compared to the WT mice. Moreover, reduced granulocyte infiltration (tissue myeloperoxidase activity) and a lower elevation of serum amylase and lipase activity could also be detected in the KO mice. Furthermore, primary acinar cells isolated from KO mice were also protected from cerulein-induced toxicity compared to WT cells. In summary, our data suggest that PARP inhibitors may be promising candidates for repurposing to treat not only acute but chronic pancreatitis as well.


Assuntos
Pancreatite/fisiopatologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Células Acinares/metabolismo , Doença Aguda , Animais , Ceruletídeo/farmacologia , Modelos Animais de Doenças , Fibrose , Inflamação/patologia , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas/metabolismo , Pancreatite/imunologia , Pancreatite Crônica/patologia , Poli(ADP-Ribose) Polimerase-1/fisiologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562813

RESUMO

The conserved Blm10/PA200 proteins are proteasome activators. Previously, we identified PA200-enriched regions in the genome of SH-SY5Y neuroblastoma cells by chromatin immunoprecipitation (ChIP) and ChIP-seq analysis. We also found that selective mitochondrial inhibitors induced PA200 redistribution in the genome. Collectively, our data indicated that PA200 regulates cellular homeostasis at the transcriptional level. In the present study, our aim is to investigate the impact of stable PA200 depletion (shPA200) on the overall transcriptome of SH-SY5Y cells. RNA-seq data analysis reveals that the genetic ablation of PA200 leads to overall changes in the transcriptional landscape of SH-SY5Y neuroblastoma cells. PA200 activates and represses genes regulating metabolic processes, such as the glycolysis and mitochondrial function. Using metabolic assays in live cells, we showed that stable knockdown of PA200 does not change basal respiration. Spare respiratory capacity and proton leak however are slightly, yet significantly, reduced in PA200-deficient cells by 99.834% and 84.147%, respectively, compared to control. Glycolysis and glycolytic capacity show a 42.186% and 26.104% increase in shPA200 cells, respectively, compared to control. These data suggest a shift from oxidative phosphorylation to glycolysis especially when cells are exposed to oligomycin-induced stress. Furthermore, we observed a preserved long and compact tubular mitochondrial morphology after inhibition of ATP synthase by oligomycin, which might be associated with the glycolytic change of shPA200 cells. The present study also demonstrates that the proteolytic cleavage of Opa1 is affected, and that the level of OMA1 is significantly reduced in shPA200 cells upon oligomycin-induced mitochondrial insult. Together, these findings suggest a role for PA200 in the regulation of metabolic changes in response to selective inhibition of ATP synthase in an in vitro cellular model.


Assuntos
GTP Fosfo-Hidrolases/genética , Perfilação da Expressão Gênica/métodos , Neuroblastoma/genética , Proteínas Nucleares/genética , RNA Interferente Pequeno/farmacologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Deleção de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Glicólise/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Proteínas Nucleares/antagonistas & inibidores , Oligomicinas/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Análise de Sequência de RNA
7.
Cancers (Basel) ; 12(5)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392755

RESUMO

Osteosarcoma (OS) is the most common bone tumor in children and adolescents. Modern OS treatment, based on the combination of neoadjuvant chemotherapy (cisplatin + doxorubicin + methotrexate) with subsequent surgical removal of the primary tumor and metastases, has dramatically improved overall survival of OS patients. However, further research is needed to identify new therapeutic targets. Here we report that expression level of the nuclear NAD synthesis enzyme, nicotinamide mononucleotide adenylyltransferase-1 (NMNAT1), increases in U-2OS cells upon exposure to DNA damaging agents, suggesting the involvement of the enzyme in the DNA damage response. Moreover, genetic inactivation of NMNAT1 sensitizes U-2OS osteosarcoma cells to cisplatin, doxorubicin, or a combination of these two treatments. Increased cisplatin-induced cell death of NMNAT1-/- cells showed features of both apoptosis and necroptosis, as indicated by the protective effect of the caspase-3 inhibitor z-DEVD-FMK and the necroptosis inhibitor necrostatin-1. Activation of the DNA damage sensor enzyme poly(ADP-ribose) polymerase 1 (PARP1), a major consumer of NAD+ in the nucleus, was fully blocked by NMNAT1 inactivation, leading to increased DNA damage (phospho-H2AX foci). The PARP inhibitor, olaparib, sensitized wild type but not NMNAT1-/- cells to cisplatin-induced anti-clonogenic effects, suggesting that impaired PARP1 activity is important for chemosensitization. Cisplatin-induced cell death of NMNAT1-/- cells was also characterized by a marked drop in cellular ATP levels and impaired mitochondrial respiratory reserve capacity, highlighting the central role of compromised cellular bioenergetics in chemosensitization by NMNAT1 inactivation. Moreover, NMNAT1 cells also displayed markedly higher sensitivity to cisplatin when grown as spheroids in 3D culture. In summary, our work provides the first evidence that NMNAT1 is a promising therapeutic target for osteosarcoma and possibly other tumors as well.

8.
Int J Mol Sci ; 20(21)2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717806

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder, caused by an abnormal polyglutamine (polyQ) expansion in the huntingtin protein (Htt). Mitochondrial dysfunction and impairment of the ubiquitin-proteasome system (UPS) are hallmarks of HD neurons. The extraneural manifestations of HD are still unclear. We investigated the crosstalk between mitochondria and proteolytic function in skin fibroblasts from juvenile HD patients. We found reduced mitosis, increased cell size, elevated ROS and increased mitochondrial membrane potential in juvenile HD fibroblasts, while cellular viability was maintained. Mitochondrial OXPHOS analysis did not reveal significant differences compared to control. However, the level of mitochondrial fusion and fission proteins was significantly lower and branching in the mitochondria network was reduced. We hypothesized that juvenile HD fibroblasts counterbalance cellular damage and mitochondrial network deficit with altered proteasome activity to promote cell survival. Our data reveal that juvenile HD fibroblasts exhibit higher proteasome activity, which was associated with elevated gene and protein expression of parkin. Moreover, we demonstrate elevated proteasomal degradation of the mitochondrial fusion protein Mfn1 in diseased cells compared to control cells. Our data suggest that juvenile HD fibroblasts respond to mutant polyQ expansion of Htt with enhanced proteasome activity and faster turnover of specific UPS substrates to protect cells.


Assuntos
Fibroblastos/metabolismo , Proteína Huntingtina/genética , Doença de Huntington/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proliferação de Células , Células Cultivadas , Fibroblastos/citologia , GTP Fosfo-Hidrolases/metabolismo , Glicólise , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Mutação , Neurônios/metabolismo , Peptídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pele/citologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
9.
Int J Mol Sci ; 20(17)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484391

RESUMO

Activated macrophages upregulate inducible nitric oxide synthase (iNOS) leading to the profuse production of nitric oxide (NO) and, eventually, tissue damage. Using macrophage NO production as a biochemical marker of inflammation, we tested different parts (flower, leaf, and stem) of the medicinal plant, Spilanthes acmella. We found that extracts prepared from all three parts, especially the flowers, suppressed NO production in RAW macrophages in response to interferon-γ and lipopolysaccharide. Follow up experiments with selected bioactive molecules from the plant (α-amyrin, ß-caryophylline, scopoletin, vanillic acid, trans-ferulic acid, and spilanthol) indicated that the N-alkamide, spilanthol, is responsible for the NO-suppressive effects and provides protection from NO-dependent cell death. Spilanthol reduced the expression of iNOS mRNA and protein and, as a possible underlying mechanism, inhibited the activation of several transcription factors (NFκB, ATF4, FOXO1, IRF1, ETS, and AP1) and sensitized cells to downregulation of Smad (TF array experiments). The iNOS inhibitory effect translated into an anti-inflammatory effect, as demonstrated in a phorbol 12-myristate 13-acetate-induced dermatitis and, to a smaller extent, in cerulein-induced pancreatitis. In summary, we demonstrate that spilanthol inhibits iNOS expression, NO production and suppresses inflammatory TFs. These events likely contribute to the observed anti-inflammatory actions of spilanthol in dermatitis and pancreatitis.


Assuntos
Dermatite/tratamento farmacológico , Dermatite/metabolismo , Macrófagos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Alcamidas Poli-Insaturadas/uso terapêutico , Animais , Sobrevivência Celular/efeitos dos fármacos , Dermatite/genética , Proteína Forkhead Box O1/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Pancreatite/genética , Peroxidase/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
10.
Redox Biol ; 26: 101261, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31279985

RESUMO

Activated macrophages play a central role in both the development and resolution of inflammation. These immune cells need to be functional in harmful conditions with high levels of reactive oxygen and nitrogen species that can damage their basic cell components, which may alter their metabolism. An excessive accumulation of these cell alterations drives macrophages inexorably to cell death, which has been associated to the development of several inflammatory diseases and even with aging in a process termed as "immunosenescence". Macrophages, however, exhibit a prolonged survival in this hostile environment because they equip themselves with a complex network of protective mechanisms. Here we provide an overview of these self-defense mechanisms with special attention being paid to bioactive lipid mediators, NRF2 signaling and metabolic reprogramming.


Assuntos
Imunossenescência , Macrófagos/metabolismo , Oxirredução , Estresse Oxidativo , Animais , Biomarcadores , Suscetibilidade a Doenças , Humanos , Imunidade Inata , Inflamação/etiologia , Inflamação/metabolismo , Metabolismo dos Lipídeos , Macrófagos/imunologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
11.
Free Radic Biol Med ; 131: 184-196, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30502458

RESUMO

In inflamed tissues or during ischemia-reperfusion episodes, activated macrophages produce large amounts of reactive species and are, thus, exposed to the damaging effects of reactive species. Here, our goal was to investigate the mechanism whereby activated macrophages protect themselves from oxidant stress-induced cell death. Hydrogen peroxide-treated mouse bone marrow-derived macrophages (BMDM) and THP-1 human monocyte-derived cells were chosen as models. We found a gradual development of resistance: first in monocyte-to-macrophage differentiation, and subsequently after lipopolysaccharide (LPS) exposure. Investigating the mechanism of the latter, we found that exposure to intense hydrogen peroxide stress causes poly(ADP-ribose) polymerase-1 (PARP-1) dependent programmed necrotic cell death, also known as parthanatos, as indicated by the protected status of PARP-1 knockout BMDMs and the protective effect of the PARP inhibitor PJ-34. In hydrogen peroxide-treated macrophages, however, apoptosis inducing factor (AIF) proved dispensable for parthanatos; nuclear translocation of AIF was not observed. A key event in LPS-mediated protection against the hydrogen peroxide-induced AIF independent parthanatos was downregulation of PARP1 mRNA and protein. The importance of this event was confirmed by overexpression of PARP1 in THP1 cells using a viral promoter, which lead to stable PARP1 levels even after LPS treatment and unresponsiveness to LPS-induced cytoprotection. In BMDMs, LPS-induced PARP1 suppression lead to prevention of NAD+ depletion. Moreover, LPS also induced expression of antioxidant proteins (superoxide dismutase-2, thioredoxin reductase 1 and peroxiredoxin) and triggered a metabolic shift to aerobic glycolysis, also known as the Warburg effect. In summary, we provide evidence that in macrophages intense hydrogen peroxide stress causes AIF-independent parthanatos from which LPS provides protection. The mechanism of LPS-mediated cytoprotection involves downregulation of PARP1, spared NAD+ and ATP pools, upregulation of antioxidant proteins, and a metabolic shift from mitochondrial respiration to aerobic glycolysis.


Assuntos
Fator de Indução de Apoptose/genética , Peróxido de Hidrogênio/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/genética , Superóxido Dismutase/genética , Animais , Fator de Indução de Apoptose/metabolismo , Regulação da Expressão Gênica , Glicólise/efeitos dos fármacos , Glicólise/genética , Humanos , Peróxido de Hidrogênio/antagonistas & inibidores , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NAD/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Parthanatos/efeitos dos fármacos , Parthanatos/genética , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Fenantrenos/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Cultura Primária de Células , Regiões Promotoras Genéticas , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Superóxido Dismutase/metabolismo , Células THP-1 , Tiorredoxina Redutase 1/genética , Tiorredoxina Redutase 1/metabolismo
12.
Free Radic Biol Med ; 131: 218-224, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529301

RESUMO

The function of macrophages makes them vulnerable to several sources of stress and damage, and thus there is a considerable requirement for some form of resilient molecular defence. Differentiation of human macrophages and their further pro-inflammatory (M1) polarization with bacterial endotoxin is associated with increased transcription of PARP1 and SOD2. The latter gene responded immediately to LPS with high NFκB-dependent expression rate, and the resulting enzyme made M1 macrophages resistant to hydrogen peroxide-induced oxidative stress and associated cell death. LPS-induced recruitment of RELA to SOD2 promoter was accompanied by release of PARP1 and LSD1 from chromatin and increased H3K4 di- and tri-methylation. PARP1 dissociation from SOD2 promoter occurred at an early stage of SOD2 transcriptional activation. This event contributed to the termination of mRNA synthesis at a later stage of macrophage polarization by allowing LSD1 to rebind to the SOD2 promoter. LSD1 removed transcription-promoting methylation of H3K4 and led to displacement of RELA. Analysis of temporal changes at the SOD2 promoter indicated a direct mutual interdependence between PARP1, LSD1, H3K4 methylation and the ongoing SOD2 transcription, which correlated positively with both PARP1 abundance on the chromatin and dimethylation of H3K4, but negatively with LSD1 and chromatin compaction in LPS-treated macrophages. Deficiency of LSD1 activity and maintenance of PARP1 at the SOD2 promoter substantially upregulated SOD2 level, thereby further increasing resistance of M1 macrophages to hydrogen peroxide. Inhibitors of LSD1 and PARP1 poisons that capture the latter enzyme on the chromatin seem to be prosurvival molecular tools protecting polarized macrophages from certain pro-oxidative conditions.


Assuntos
Morte Celular/efeitos dos fármacos , Histona Desmetilases/genética , Peróxido de Hidrogênio/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/genética , Superóxido Dismutase/genética , Morte Celular/genética , Cromatina/química , Cromatina/metabolismo , Regulação da Expressão Gênica , Histona Desmetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Macrófagos/citologia , Macrófagos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Cultura Primária de Células , Regiões Promotoras Genéticas , Transdução de Sinais , Superóxido Dismutase/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Transcrição Gênica
13.
Oxid Med Cell Longev ; 2018: 5286785, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30581533

RESUMO

Wound healing is a complex multiphase process which can be hampered by many factors including impaired local circulation, hypoxia, infection, malnutrition, immunosuppression, and metabolic dysregulation in diabetes. Redox dysregulation is a common feature of many skin diseases demonstrated by virtually all cell types in the skin with overproduction of reactive oxygen and nitrogen species. The objective of this study was to characterize the redox environment in wound fluids and sera from patients suffering from chronic leg ulcers (n = 19) and acute wounds (bulla fluids from second degree burns; n = 11) with serum data also compared to those from healthy volunteers (n = 7). Significantly higher concentrations of TNF-α, interleukine-8, vascular endothelial growth factor, and lactate dehydrogenase (measure of cell damage) were found in fluids from chronic wounds compared to acute ones. The extent of protein carbonylation (measure of protein oxidation), lipid peroxidation, and tyrosine nitration (indicator of peroxynitrite production) was similar in acute and chronic wound fluids, while radical scavenging activity and glutathione (GSH) levels were elevated in chronic wound fluids compared to acute wounds. Sera were also assessed for the same set of parameters with no significant differences detected. Nitrotyrosine (the footprint of the potent oxidant peroxynitrite) and poly(ADP-ribose) (the product of the DNA damage sensor enzyme PARP-1) could be detected in wound biopsies. Our data identify multiple signs of redox stress in chronic wounds with notable differences. In chronic wounds, elevations in antioxidant levels/activities may indicate compensatory mechanisms against inflammation. The presence of nitrotyrosine and poly(ADP-ribose) in tissues from venous leg ulcers indicate peroxynitrite production and PARP activation in chronic wounds.


Assuntos
Cicatrização/fisiologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Glutationa/metabolismo , Humanos , Interleucina-8/metabolismo , L-Lactato Desidrogenase/metabolismo , Peroxidação de Lipídeos/fisiologia , Masculino , Pessoa de Meia-Idade , Oxirredução , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Carbonilação Proteica/fisiologia , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Redox Biol ; 16: 59-74, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29477046

RESUMO

Redox regulation has been proposed to control various aspects of carcinogenesis, cancer cell growth, metabolism, migration, invasion, metastasis and cancer vascularization. As cancer has many faces, the role of redox control in different cancers and in the numerous cancer-related processes often point in different directions. In this review, we focus on the redox control mechanisms of tumor cell destruction. The review covers the tumor-intrinsic role of oxidants derived from the reduction of oxygen and nitrogen in the control of tumor cell proliferation as well as the roles of oxidants and antioxidant systems in cancer cell death caused by traditional anticancer weapons (chemotherapeutic agents, radiotherapy, photodynamic therapy). Emphasis is also put on the role of oxidants and redox status in the outcome following interactions between cancer cells, cytotoxic lymphocytes and tumor infiltrating macrophages.


Assuntos
Antioxidantes/uso terapêutico , Neoplasias/tratamento farmacológico , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Estresse Oxidativo/genética , Transdução de Sinais/efeitos dos fármacos
15.
Artigo em Inglês | MEDLINE | ID: mdl-29313809

RESUMO

Differentiation of human monocytes is associated with proliferation arrest resulting from activation of the inter alia retinoblastoma protein family of gene repressors, which target gene promoters in an E2F-dependent manner. To investigate RBL2 contribution to defining monocyte phenotype and function, we used primer libraries. We identified genes encoding two surface receptors (CXCR1 and IL17RE) and two TLR signaling mediators (CD86 and NFKB2) that are repressed by the RBL2-E2F4-HDAC1-BRM complex. Surprisingly, PARP1 co-regulated 24 out of the 28 identified genes controlled by RBL2. Upon RBL2 silencing, PARP1 was recruited to one subset of RBL2-dependent genes, represented by MAP2K6 and MAPK3. RBL2 silencing also restored PARP1 transcription. Gene promoters enriched in PARP1 were characterized by increased histone acetylation and the replacement of HDAC1 with EP300. While PARP1 was dispensable for HDAC1 dissociation, EP300 was found only at gene promoters enriched in PARP1. EP300 activated transcription of PARP1/RBL2 co-regulated genes, but not genes solely controlled by RBL2. DNA was a prerequisite to the formation of an immunoprecipitated PARP1-EP300 complex, suggesting that PARP1 enabled EP300 binding, which in turn activated gene transcription. Notably, PARP1 overexpression failed to overcome the inhibitory effect of RBL2 on MAP2K6 and MAPK3 transcription. The same interdependence was observed in proliferating cancer cells; the low abundance of RBL2 resulted in PARP1-mediated EP300 recruitment to promoters of the MAP2K6 and MAPK3 genes. We conclude that RBL2 may indirectly regulate transcription of some genes by controlling PARP1-mediated EP300 recruitment.

16.
Free Radic Biol Med ; 53(9): 1680-8, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22964577

RESUMO

Cigarette smoking can contribute to the development of many human diseases such as cardiovascular disease, lung cancer, asthma, and chronic obstructive pulmonary disease. Thousands of compounds are present in cigarette smoke, including a large number of reactive oxygen species that can cause DNA damage, leading to the activation of poly(ADP-ribose) polymerase (PARP) enzymes. The PAR polymer is degraded by poly(ADP-ribose) glycohydrolase (PARG). Here we have investigated the effects of cigarette smoke extract (CSE) on A549 human lung epithelial cells. CSE induced DNA damage (comet assay), PAR accumulation (immunofluorescence and immunoblotting), impaired proliferation (clonogenic survival assay and electric cell-substrate impedance sensing measurement), and cell death (MTT reduction, propidium iodide uptake, lactate dehydrogenase release). CSE-induced cell death was also characterized by mitochondrial depolarization but massive translocation of apoptosis-inducing factor could not be observed. To investigate the role of PARylation in CSE-induced oxidative stress, PARP-1- and PARG-silenced A549 cells were used. Silencing of both PARP-1 and PARG sensitized cells to CSE-induced toxicity: PARP-1- and PARG-silenced cell lines exhibited reduced clonogenic survival, displayed a delayed repair of DNA breaks, and showed higher levels of cytotoxicity. CSE triggered the production of mitochondrial superoxide and hydrogen peroxide. Addition of superoxide dismutase increased, whereas catalase abolished, CSE-induced PAR formation. In summary, our data show that the superoxide-hydrogen peroxide-DNA breakage pathway activates the PAR cycle by PARP-1 and PARG, which serves as a survival mechanism in CSE-exposed cells. Our data also raise the possibility that the PARP-1/PARG status of smokers may be an important determinant of the efficiency of DNA repair in their lungs and of their susceptibility to CS-induced carcinogenesis.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Nicotiana/química , Oxidantes/farmacologia , Poli Adenosina Difosfato Ribose/metabolismo , Fumaça , Linhagem Celular Tumoral , Dano ao DNA , Técnicas de Silenciamento de Genes , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas/metabolismo , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA