Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(4)2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38674347

RESUMO

Inflammatory bowel disease (IBD) comprising ulcerative colitis and Crohn's disease is a chronic immune-mediated disease which affects the gastrointestinal tract with a relapsing and remitting course, causing lifelong morbidity. IBD pathogenesis is determined by multiple factors including genetics, immune and microbial factors, and environmental factors. Although therapy options are expanding, remission rates are unsatisfiable, and together with the disease course, response to therapy remains unpredictable. Therefore, the identification of biomarkers that are predictive for the disease course and response to therapy is a significant challenge. Extrachromosomal circular DNA (eccDNA) fragments exist in all tissue tested so far. These fragments, ranging in length from a few hundreds of base pairs to mega base pairs, have recently gained more interest due to technological advances. Until now, eccDNA has mainly been studied in relation to cancer due to its ability to act as an amplification site for oncogenes and drug resistance genes. However, eccDNA could also play an important role in inflammation, expressed both locally in the- involved tissue and at distant sites. Here, we review the current evidence on the molecular mechanisms of eccDNA and its role in inflammation and IBD. Additionally, the potential of eccDNA as a tissue or plasma marker for disease severity and/or response to therapy is evaluated.


Assuntos
Biomarcadores , DNA Circular , Doenças Inflamatórias Intestinais , Humanos , DNA Circular/genética , Doenças Inflamatórias Intestinais/genética , Animais
2.
Comput Struct Biotechnol J ; 21: 4207-4214, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705597

RESUMO

The presence of oncogene carrying eccDNAs is strongly associated with carcinogenesis and poor patient survival. Tumour biopsies and in vitro cancer cell lines are frequently utilized as models to investigate the role of eccDNA in cancer. However, eccDNAs are often lost during the in vitro growth of cancer cell lines, questioning the reproducibility of studies utilizing cancer cell line models. Here, we conducted a comprehensive analysis of eccDNA variability in seven cancer cell lines (MCA3D, PDV, HaCa4, CarC, MIA-PaCa-2, AsPC-1, and PC-3). We compared the content of unique eccDNAs between triplicates of each cell line and found that the number of unique eccDNA is specific to each cell line, while the eccDNA sequence content varied greatly among triplicates (∼ 0-1% eccDNA coordinate commonality). In the PC-3 cell line, we found that the large eccDNA (ecDNA) with MYC is present in high-copy number in an NCI cell line isolate but not present in ATCC isolates. Together, these results reveal that the sequence content of eccDNA is highly variable in cancer cell lines. This highlights the importance of testing cancer cell lines before use, and to enrich for subclones in cell lines with the desired eccDNA to get relatively pure population for studying the role of eccDNA in cancer.

3.
Cancer Med ; 12(17): 17679-17691, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37602814

RESUMO

BACKGROUNDS: Despite recent advances, many cancers are still detected too late for curative treatment. There is, therefore, a need for the development of new diagnostic methods and biomarkers. One approach may arise from the detection of extrachromosomal circular DNA (eccDNA), which is part of cell-free DNA in human plasma. AIMS: First, we assessed and compared two methods for the purification of eccDNA from plasma. Second, we tested for an easy diagnostic application of eccDNA liquid biopsy-based assays. MATERIALS & METHODS: For the comparison we tested a solid-phase silica purification method and a phenol/chloroform method with salt precipitation. For the diagnostic application of eccDNA we developed and tested a qPCR primer-based SNP detection system, for the detection of two well-established cancer-causing KRAS mutations (G12V and G12R) on circular DNA. This investigation was supported by purifying, sequencing, and analysing clinical plasma samples for eccDNAs containing KRAS mutant alleles in 0.5 mL plasma from 16 pancreatic ductal adenocarcinoma patients and 19 healthy controls. RESULTS: In our method comparison we observed, that following exonuclease treatment a lower eccDNA yield was found for the phenol/chloroform method (15.7%-26.7%) compared with the solid-phase purification approach (47.8%-65.9%). For the diagnostic application of eccDNA tests, the sensitivity of the tested qPCR assay only reached ~10-3 in a background of 105 wild type (wt) KRAS circular entities, which was not improved by general amplification or primer-based inhibition of wt KRAS amplification. Furthermore, we did not detect eccDNA containing KRAS in any of the clinical samples. DISCUSSION: A potential explanation for our inability to detect any KRAS mutations in the clinical samples may be related to the general low abundance of eccDNA in plasma. CONCLUSION: Taken together our results provide a benchmark for eccDNA purification methods while raising the question of what is required for the optimal fast and sensitive detection of SNP mutations on eccDNA with greater sensitivity than primer-based qPCR detection.

4.
Cells ; 12(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37566032

RESUMO

Inflammatory bowel diseases (IBD), including Crohn's Disease (CD) and Ulcerative Colitis (UC) are chronic multifactorial disorders which affect the gastrointestinal tract with variable extent. Despite extensive research, their etiology and exact pathogenesis are still unknown. Cell-free DNAs (cfDNAs) are defined as any DNA fragments which are free from the origin cell and able to circulate into the bloodstream with or without microvescicles. CfDNAs are now being increasingly studied in different human diseases, like cancer or inflammatory diseases. However, to date it is unclear how IBD etiology is linked to cfDNAs in plasma. Extrachromosomal circular DNA (eccDNA) are non-plasmidic, nuclear, circular and closed DNA molecules found in all eukaryotes tested. CfDNAs appear to play an important role in autoimmune diseases, inflammatory processes, and cancer; recently, interest has also grown in IBD, and their role in the pathogenesis of IBD has been suggested. We now suggest that eccDNAs also play a role in IBD. In this review, we have comprehensively collected available knowledge in literature regarding cfDNA, eccDNA, and structures involving them such as neutrophil extracellular traps and exosomes, and their role in IBD. Finally, we focused on old and novel potential molecular therapies and drug delivery systems, such as nanoparticles, for IBD treatment.

5.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36198068

RESUMO

Extrachromosomal circular DNA (eccDNA) of chromosomal origin is found in many eukaryotic species and cell types, including cancer, where eccDNAs with oncogenes drive tumorigenesis. Most studies of eccDNA employ short-read sequencing for their identification. However, short-read sequencing cannot resolve the complexity of genomic repeats, which can lead to missing eccDNA products. Long-read sequencing technologies provide an alternative to constructing complete eccDNA maps. We present a software suite, Construction-based Rolling-circle-amplification for eccDNA Sequence Identification and Location (CReSIL), to identify and characterize eccDNA from long-read sequences. CReSIL's performance in identifying eccDNA, with a minimum F1 score of 0.98, is superior to the other bioinformatic tools based on simulated data. CReSIL provides many useful features for genomic annotation, which can be used to infer eccDNA function and Circos visualization for eccDNA architecture investigation. We demonstrated CReSIL's capability in several long-read sequencing datasets, including datasets enriched for eccDNA and whole genome datasets from cells containing large eccDNA products. In conclusion, the CReSIL suite software is a versatile tool for investigating complex and simple eccDNA in eukaryotic cells.


Assuntos
DNA Circular , Genoma , DNA Circular/genética , DNA/genética , Células Eucarióticas
6.
Comput Struct Biotechnol J ; 20: 3059-3067, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782732

RESUMO

Extrachromosomal circular DNA (eccDNA) of chromosomal origin is common in eukaryotic cells. Amplification of oncogenes on large eccDNA (ecDNA) can drive biological processes such as tumorigenesis, and identification of eccDNA by sequencing after removal of chromosomal DNA is therefore important for understanding their impact on the expressed phenotype. However, the circular mitochondrial DNA (mtDNA) might challenge the detection of eccDNA because the average somatic cell has hundreds of copies of mtDNA. Here we show that 61.2-99.5% of reads from eccDNA-enriched samples correspond to mtDNA in mouse tissues. We have developed a method to selectively remove mtDNA from total circular DNA by CRISPR/Cas9 guided cleavage of mtDNA with one single-guide RNA (sgRNA) or two sgRNAs followed by exonuclease degradation of the linearized mtDNA. Sequencing revealed that mtDNA reads were 85.9% ± 12.6% removed from eccDNA of 9 investigated mouse tissues. CRISPR/Cas9 cleavage also efficiently removed mtDNA from a human HeLa cell line and colorectal cancer samples. We identified up to 14 times more, and also larger eccDNA in CRISPR/Cas9 treated colorectal cancer samples than in untreated samples. We foresee that the method can be applied to effectively remove mtDNA from any eukaryotic species to obtain higher eccDNA yields.

7.
Trends Genet ; 38(7): 766-781, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35277298

RESUMO

Extrachromosomal circular DNA (eccDNA) is a closed-circle, nuclear, nonplasmid DNA molecule found in all tested eukaryotes. eccDNA plays important roles in cancer pathogenesis, evolution of tumor heterogeneity, and therapeutic resistance. It is known under many names, including very large cancer-specific circular extrachromosomal DNA (ecDNA), which carries oncogenes and is often amplified in cancer cells. Our understanding of eccDNA has historically been limited and fragmented. To provide better a context of new and previous research on eccDNA, in this review we give an overview of the various names given to eccDNA at different times. We describe the different mechanisms for formation of eccDNA and the methods used to study eccDNA thus far. Finally, we explore the potential clinical value of eccDNA.


Assuntos
DNA Circular , Neoplasias , DNA/genética , DNA Circular/genética , Humanos , Neoplasias/genética
8.
Semin Cell Dev Biol ; 128: 40-50, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35292190

RESUMO

Extrachromosomal circular DNA (eccDNA) with exons and whole genes are common features of eukaryotic cells. Work from especially tumours and the yeast Saccharomyces cerevisiae has revealed that eccDNA can provide large selective advantages and disadvantages. Besides the phenotypic effect due to expression of an eccDNA fragment, eccDNA is different from other mutations in that it is released from 1:1 segregation during cell division. This means that eccDNA can quickly change copy number, pickup secondary mutations and reintegrate into a chromosome to establish substantial genetic variation that could not have evolved via canonical mechanisms. We propose a unifying 5-factor model for conceptualizing the eccDNA load of a eukaryotic cell, emphasizing formation, replication, segregation, selection and elimination. We suggest that the magnitude of these sequential events and their interactions determine the copy number of eccDNA in mitotically dividing cells. We believe that our model will provide a coherent framework for eccDNA research, to understand its biology and the factors that can be manipulated to modulate eccDNA load in eukaryotic cells.


Assuntos
DNA Circular , Células Eucarióticas , Cromossomos , DNA , DNA Circular/genética , Saccharomyces cerevisiae/genética
10.
BMC Bioinformatics ; 20(1): 663, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31830908

RESUMO

BACKGROUND: Circular DNA has recently been identified across different species including human normal and cancerous tissue, but short-read mappers are unable to align many of the reads crossing circle junctions hence limiting their detection from short-read sequencing data. RESULTS: Here, we propose a new method, Circle-Map that guides the realignment of partially aligned reads using information from discordantly mapped reads to map the short unaligned portions using a probabilistic model. We compared Circle-Map to similar up-to-date methods for circular DNA and RNA detection and we demonstrate how the approach implemented in Circle-Map dramatically increases sensitivity for detection of circular DNA on both simulated and real data while retaining high precision. CONCLUSION: Circle-Map is an easy-to-use command line tool that implements the required pipeline to accurately detect circular DNA from circle enriched next generation sequencing experiments. Circle-Map is implemented in python3.6 and it is freely available at https://github.com/iprada/Circle-Map.


Assuntos
DNA Circular/genética , Nucleotídeos/genética , Alinhamento de Sequência/métodos , Bases de Dados Genéticas , Humanos , Software
11.
Nat Commun ; 9(1): 1069, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540679

RESUMO

The human genome is generally organized into stable chromosomes, and only tumor cells are known to accumulate kilobase (kb)-sized extrachromosomal circular DNA elements (eccDNAs). However, it must be expected that kb eccDNAs exist in normal cells as a result of mutations. Here, we purify and sequence eccDNAs from muscle and blood samples from 16 healthy men, detecting ~100,000 unique eccDNA types from 16 million nuclei. Half of these structures carry genes or gene fragments and the majority are smaller than 25 kb. Transcription from eccDNAs suggests that eccDNAs reside in nuclei and recurrence of certain eccDNAs in several individuals implies DNA circularization hotspots. Gene-rich chromosomes contribute to more eccDNAs per megabase and the most transcribed protein-coding gene in muscle, TTN (titin), provides the most eccDNAs per gene. Thus, somatic genomes are rich in chromosome-derived eccDNAs that may influence phenotypes through altered gene copy numbers and transcription of full-length or truncated genes.


Assuntos
Cromossomos Humanos/genética , DNA Circular/genética , Humanos , Mutação/genética , Transcrição Gênica/genética
12.
Proc Natl Acad Sci U S A ; 107(43): 18551-6, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20937885

RESUMO

To study adaptive evolution in defined environments, we performed evolution experiments with Saccharomyces cerevisiae (yeast) in nitrogen-limited chemostat cultures. We used DNA microarrays to identify copy-number variation associated with adaptation and observed frequent amplifications and deletions at the GAP1 locus. GAP1 encodes the general amino acid permease, which transports amino acids across the plasma membrane. We identified a self-propagating extrachromosomal circular DNA molecule that results from intrachromosomal recombination between long terminal repeats (LTRs) flanking GAP1. Extrachromosomal DNA circles (GAP1(circle)) contain GAP1, the replication origin ARS1116, and a single hybrid LTR derived from recombination between the two flanking LTRs. Formation of the GAP1(circle) is associated with deletion of chromosomal GAP1 (gap1Δ) and production of a single hybrid LTR at the GAP1 chromosomal locus. The GAP1(circle) is selected following prolonged culturing in L-glutamine-limited chemostats in a manner analogous to the selection of oncogenes present on double minutes in human cancers. Clones carrying only the gap1Δ allele were selected under various non-amino acid nitrogen limitations including ammonium, urea, and allantoin limitation. Previous studies have shown that the rate of intrachromosomal recombination between tandem repeats is stimulated by transcription of the intervening sequence. The high level of GAP1 expression in nitrogen-limited chemostats suggests that the frequency of GAP1(circle) and gap1Δ generation may be increased under nitrogen-limiting conditions. We propose that this genomic architecture facilitates evolvability of S. cerevisiae populations exposed to variation in levels and sources of environmental nitrogen.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Genes Fúngicos , Nitrogênio/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adaptação Biológica , Alelos , Sistemas de Transporte de Aminoácidos/metabolismo , Sequência de Bases , Quebras de DNA , DNA Circular/genética , DNA Fúngico/genética , Herança Extracromossômica , Deleção de Genes , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Seleção Genética , Homologia de Sequência do Ácido Nucleico , Sequências Repetidas Terminais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA