Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pigment Cell Melanoma Res ; 32(2): 248-258, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30117276

RESUMO

In humans, the CDKN2A locus encodes two transcripts, INK4A and ARF. Inactivation of either one by mutations or epigenetic changes is a frequent signature of malignant melanoma and one of the most relevant entry points for melanomagenesis. To analyze whether cdkn2ab, the fish ortholog of CDKN2A, has a similar function as its human counterpart, we studied its action in fish models for human melanoma. Overexpression of cdkn2ab in a Xiphophorus melanoma cell line led to decreased proliferation and induction of a senescence-like phenotype, indicating a melanoma-suppressive function analogous to mammals. Coexpression of Xiphophorus cdkn2ab in medaka transgenic for the mitfa:xmrk melanoma-inducing gene resulted in full suppression of melanoma development, whereas CRISPR/Cas9 knockout of cdkn2ab resulted in strongly enhanced tumor growth. In summary, this provides the first functional evidence that cdkn2ab acts as a potent tumor suppressor gene in fish melanoma models.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Ciprinodontiformes/genética , Genes Supressores de Tumor , Melanócitos/metabolismo , Melanoma Experimental/genética , Oryzias/genética , Animais , Carcinogênese/genética , Carcinogênese/patologia , Evolução Molecular , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Melanócitos/patologia , Família Multigênica , Fenótipo , Filogenia
2.
Cancer ; 125(4): 586-600, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30561760

RESUMO

BACKGROUND: Increasing knowledge of cancer genomes has triggered the development of specific targeted inhibitors, thus providing a valuable therapeutic pool. METHODS: In this report, the authors analyze the presence of targetable alterations in 136 tumor samples from 92 patients with melanoma using a comprehensive approach based on targeted DNA sequencing and supported by RNA and protein analysis. Three topics of high clinical relevance are addressed: the identification of rare, activating alterations; the detection of patient-specific, co-occurring single nucleotide variants (SNVs) and copy number variations (CNVs) in parallel pathways; and the presence of cancer-relevant germline mutations. RESULTS: The analysis of patient-matched blood and tumor samples was done with a custom-designed gene panel that was enriched for genes from clinically targetable pathways. To detect alterations with high therapeutic relevance for patients with unknown driver mutations, genes that are untypical for melanoma also were included. Among all patients, CNVs were identified in one-third of samples and contained amplifications of druggable kinases, such as CDK4, ERBB2, and KIT. Considering SNVs and CNVs, 60% of patients with metastases exhibited co-occurring activations of at least 2 pathways, thus providing a rationale for individualized combination therapies. Unexpectedly, 9% of patients carry potentially protumorigenic germline mutations frequently affecting receptor tyrosine kinases. Remarkably two-thirds of BRAF/NRAS wild-type melanomas harbor activating mutations or CNVs in receptor tyrosine kinases. CONCLUSIONS: The results indicate that the integrated analysis of SNVs, CNVs, and germline mutations reveals new druggable targets for combination tumor therapy.


Assuntos
Biomarcadores Tumorais/genética , GTP Fosfo-Hidrolases/genética , Regulação Neoplásica da Expressão Gênica , Melanoma/patologia , Proteínas de Membrana/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/patologia , Estudos de Casos e Controles , Quinase 4 Dependente de Ciclina/genética , Variações do Número de Cópias de DNA , Seguimentos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Melanoma/genética , Prognóstico , Proteínas Proto-Oncogênicas c-kit/genética , Receptor ErbB-2/genética , Neoplasias Cutâneas/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-29162497

RESUMO

Melanoma is one of the most aggressive tumors with a very low survival rate once metastasized. The incidence of newly detected cases increases every year suggesting the necessity of development and application of innovative treatment strategies. Human melanoma develops from melanocytes localized in the epidermis of the skin to malignant tumors because of deregulated effectors influencing several molecular pathways. Despite many advances in describing the molecular changes accompanying melanoma formation, many critical and clinically relevant molecular features of the transformed pigment cells and the underlying mechanisms are largely unknown. To contribute to a better understanding of the molecular processes of melanoma formation, we use a transgenic medaka melanoma model that is well suited for the investigation of melanoma tumor development because fish and human melanocytes are both localized in the epidermis. The purpose of our study was to gain insights into melanoma development from the first steps of tumor formation up to melanoma progression and to identify gene expression patterns that will be useful for monitoring treatment effects in drug screening approaches. Comparing transcriptomes from juvenile fish at the tumor initiating stage with nevi and advanced melanoma of adults, we identified stage specific expression signatures and pathways that are characteristic for the development of medaka melanoma, and are also found in human malignancies.


Assuntos
Proteínas de Peixes/genética , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Oryzias/genética , Neoplasias Cutâneas/genética , Transcriptoma , Fatores Etários , Animais , Animais Geneticamente Modificados , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Melanoma/patologia , Fator de Transcrição Associado à Microftalmia/genética , Estadiamento de Neoplasias , Regiões Promotoras Genéticas , Receptores Proteína Tirosina Quinases/genética , Neoplasias Cutâneas/patologia
4.
PLoS One ; 7(9): e45142, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028809

RESUMO

Primary osteoporosis is an age-related disease characterized by an imbalance in bone homeostasis. While the resorptive aspect of the disease has been studied intensely, less is known about the anabolic part of the syndrome or presumptive deficiencies in bone regeneration. Multipotent mesenchymal stem cells (MSC) are the primary source of osteogenic regeneration. In the present study we aimed to unravel whether MSC biology is directly involved in the pathophysiology of the disease and therefore performed microarray analyses of hMSC of elderly patients (79-94 years old) suffering from osteoporosis (hMSC-OP). In comparison to age-matched controls we detected profound changes in the transcriptome in hMSC-OP, e.g. enhanced mRNA expression of known osteoporosis-associated genes (LRP5, RUNX2, COL1A1) and of genes involved in osteoclastogenesis (CSF1, PTH1R), but most notably of genes coding for inhibitors of WNT and BMP signaling, such as Sclerostin and MAB21L2. These candidate genes indicate intrinsic deficiencies in self-renewal and differentiation potential in osteoporotic stem cells. We also compared both hMSC-OP and non-osteoporotic hMSC-old of elderly donors to hMSC of ∼30 years younger donors and found that the transcriptional changes acquired between the sixth and the ninth decade of life differed widely between osteoporotic and non-osteoporotic stem cells. In addition, we compared the osteoporotic transcriptome to long term-cultivated, senescent hMSC and detected some signs for pre-senescence in hMSC-OP.Our results suggest that in primary osteoporosis the transcriptomes of hMSC populations show distinct signatures and little overlap with non-osteoporotic aging, although we detected some hints for senescence-associated changes. While there are remarkable inter-individual variations as expected for polygenetic diseases, we could identify many susceptibility genes for osteoporosis known from genetic studies. We also found new candidates, e.g. MAB21L2, a novel repressor of BMP-induced transcription. Such transcriptional changes may reflect epigenetic changes, which are part of a specific osteoporosis-associated aging process.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Osteoporose/genética , Osteoporose/patologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Densidade Óssea/genética , Senescência Celular/genética , Análise por Conglomerados , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Fraturas por Osteoporose/genética , Fatores de Risco
5.
PLoS One ; 7(1): e29959, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22242193

RESUMO

1,25-dihydroxyvitamin D3 (1,25D3) was reported to induce premature organismal aging in fibroblast growth factor-23 (Fgf23) and klotho deficient mice, which is of main interest as 1,25D3 supplementation of its precursor cholecalciferol is used in basic osteoporosis treatment. We wanted to know if 1,25D3 is able to modulate aging processes on a cellular level in human mesenchymal stem cells (hMSC). Effects of 100 nM 1,25D3 on hMSC were analyzed by cell proliferation and apoptosis assay, ß-galactosidase staining, VDR and surface marker immunocytochemistry, RT-PCR of 1,25D3-responsive, quiescence- and replicative senescence-associated genes. 1,25D3 treatment significantly inhibited hMSC proliferation and apoptosis after 72 h and delayed the development of replicative senescence in long-term cultures according to ß-galactosidase staining and P16 expression. Cell morphology changed from a fibroblast like appearance to broad and rounded shapes. Long term treatment did not induce lineage commitment in terms of osteogenic pathways but maintained their clonogenic capacity, their surface marker characteristics (expression of CD73, CD90, CD105) and their multipotency to develop towards the chondrogenic, adipogenic and osteogenic pathways. In conclusion, 1,25D3 delays replicative senescence in primary hMSC while the pro-aging effects seen in mouse models might mainly be due to elevated systemic phosphate levels, which propagate organismal aging.


Assuntos
Senescência Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/citologia , Vitamina D/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Transformada , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Fator de Crescimento de Fibroblastos 23 , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Imunofenotipagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Camundongos , Células-Tronco Multipotentes/efeitos dos fármacos , Células-Tronco Multipotentes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Calcitriol/metabolismo , Fatores de Tempo , Vitamina D/farmacologia , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA