RESUMO
Introduction: The Burkholderia cepacia complex encompasses a group of gram-negative opportunistic pathogens that cause chronic lung infections in people with cystic fibrosis. Distinct from other respiratory pathogens, Burkholderia causes a unique clinical disease in a subset of patients known as 'cepacia syndrome', fulminant pneumonia accompanied by bacteraemia and sepsis with a mortality rate of up to 75%. Due to the bacteraemia associated with this disease, the mechanisms that allow Burkholderia to resist the bactericidal effects of serum complement-depending killing are vital. Antibodies usually promote serum killing; however, we have described 'cloaking antibodies', specific for lipopolysaccharides that paradoxically protect serum-sensitive bacteria from complement-mediated lysis. Cloaking antibodies that protect Pseudomonas aeruginosa have been found in 24%-41% of patients with chronic lung diseases. The presence of these antibodies is also associated with worse clinical outcomes. Here, we sought to determine the relevance of cloaking antibodies in patients with Burkholderia infection. Methods: Twelve Burkholderia spp. were isolated from nine pwCF and characterised for susceptibility to healthy control serum. Patient serum was analysed for the titre of the cloaking antibody. The ability of the patient serum to prevent healthy control serum (HCS) killing of its cognate isolates was determined. Results: We found that several of the Burkholderia strains were shared between patients. Ten of the 12 isolates were highly susceptible to HCS killing. Four of nine (44%) patients had cloaking antibodies that protected their cognate strain from serum killing. Depleting cloaking antibodies from patient serum restored HCS killing of Burkholderia isolates. Discussion: Cloaking antibodies are prevalent in patients with Burkholderia pulmonary infection and protect these strains from serum killing. Removal of cloaking antibodies via plasmapheresis, as previously described for individuals with life-threatening Pseudomonas infection, may be a useful new strategy for those with serious and life-threatening Burkholderia infection.
Assuntos
Anticorpos Antibacterianos , Infecções por Burkholderia , Complexo Burkholderia cepacia , Humanos , Infecções por Burkholderia/imunologia , Infecções por Burkholderia/microbiologia , Anticorpos Antibacterianos/sangue , Complexo Burkholderia cepacia/imunologia , Fibrose Cística/complicações , Fibrose Cística/imunologia , Fibrose Cística/microbiologia , Feminino , Masculino , Adulto , Lipopolissacarídeos/imunologia , Atividade Bactericida do Sangue , Pessoa de Meia-Idade , Bacteriemia/microbiologia , Bacteriemia/imunologiaRESUMO
There is an urgent need to develop sensitive, non-invasive biomarkers that can track airway inflammatory activity for patients with cystic fibrosis (CF). Urinary glutathione sulfonamide (GSA) levels correlate well with GSA levels in BAL samples and other markers of neutrophilic inflammation, suggesting that this biomarker may be suitable for tracking disease activity in this population. We recruited 102 children (median 11.5 years-old) and 64 adults (median 32.5 years-old) who were admitted to hospital for management of an acute pulmonary exacerbation and/or eradication of infectious agents such as Pseudomonas aeruginosa or Staphylococcus aureus. Our aim was to explore how urinary GSA levels changed across admission timepoints. Urine samples were collected at admission and discharge, and GSA measured by liquid chromatography with mass spectrometry. Paired admission-discharge results were compared using Wilcoxon signed-rank test. Paired admission-discharge samples were available for 53 children and 60 adults. A statistically significant difference was observed between admission-discharge for children and adults. Spearman's correlation analysis identified a correlation between urinary GSA levels and sex and S. aureus infection for children only. Our preliminary findings suggest that urinary GSA is responsive to the resolution of an acute pulmonary exacerbation and therefore warrants further studies in this population.
RESUMO
BACKGROUND: Pseudomonas aeruginosa is a multidrug-resistant pathogen causing recalcitrant pulmonary infections in people with cystic fibrosis (pwCF). Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have been developed that partially correct the defective chloride channel driving disease. Despite the many clinical benefits, studies in adults have demonstrated that while P. aeruginosa sputum load decreases, chronic infection persists. Here, we investigate how P. aeruginosa in pwCF may change in the altered lung environment after CFTR modulation. METHODS: P. aeruginosa strains (n = 105) were isolated from the sputum of 11 chronically colonized pwCF at baseline and up to 21 months posttreatment with elexacaftor-tezacaftor-ivacaftor or tezacaftor-ivacaftor. Phenotypic characterization and comparative genomics were performed. RESULTS: Clonal lineages of P. aeruginosa persisted after therapy, with no evidence of displacement by alternative strains. We identified commonly mutated genes among patient isolates that may be positively selected for in the CFTR-modulated lung. However, classic chronic P. aeruginosa phenotypes such as mucoid morphology were sustained, and isolates remained just as resistant to clinically relevant antibiotics. CONCLUSIONS: Despite the clinical benefits of CFTR modulators, clonal lineages of P. aeruginosa persist that may prove just as difficult to manage in the future, especially in pwCF with advanced lung disease.
Assuntos
Aminofenóis , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Combinação de Medicamentos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Quinolonas , Escarro , Humanos , Fibrose Cística/microbiologia , Fibrose Cística/complicações , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Aminofenóis/uso terapêutico , Aminofenóis/farmacologia , Quinolonas/uso terapêutico , Quinolonas/farmacologia , Escarro/microbiologia , Indóis/uso terapêutico , Indóis/farmacologia , Benzodioxóis/uso terapêutico , Benzodioxóis/farmacologia , Adulto , Feminino , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Masculino , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Mutação , Infecção Persistente/microbiologia , Piridinas , QuinolinasRESUMO
Introduction: The Burkholderia cepacia complex (BCC) encompasses a group of at least 22 genetically distinct gram-negatives bacterial species ubiquitous in nature. Recognised as a group of genetically and phenotypically flexible species, the BCC inhabits diverse ecological niches causing both plant and human diseases. Comparative genomic analysis provides an in depth understanding into the population biology, phylogenetic relationship, and genomic architecture of species. Methods: Here, we genomically characterise Burkholderia anthina isolated from patients with chronic lung infections, an understudied pathogen within the Burkholderia cepacia complex. Results: We demonstrate that B. anthina is polyphyletic and constitutes two distinct evolutionary lineages. Core- and pan-genome analyses demonstrated substantial metabolic diversity, with B. anthina Clade I enriched in genes associated with microbial metabolism in diverse environments, including degradation of aromatic compounds and metabolism of xenobiotics, while B. anthina Clade II demonstrated an enhanced capability for siderophore biosynthesis. Discussion: Based on our phylogenetic and comparative genomic analyses, we suggest stratifying B. anthina to recognise a distinct species harbouring increased potential for iron metabolism via siderophore synthesis, for which we propose the name Burkholderia anthinoferum (sp. nov.).
RESUMO
Glucose-6-phosphatase-α (G6Pase-α) catalyzes the hydrolysis of glucose-6-phosphate to glucose and functions as a key regulator in maintaining blood glucose homeostasis. Deficiency in G6Pase-α causes glycogen storage disease 1a (GSD1a), an inherited disorder characterized by life-threatening hypoglycemia and other long-term complications. We have developed a potential mRNA-based therapy for GSD1a and demonstrated that a human G6Pase-α (hG6Pase-α) variant harboring a single serine (S) to cysteine (C) substitution at the amino acid site 298 (S298C) had > twofold increase in protein expression, resulting in improved in vivo efficacy. Here, we sought to investigate the mechanisms contributing to the increased expression of the S298C variant. Mutagenesis of hG6Pase-α identified distinct protein variants at the 298 amino acid position with substantial reduction in protein expression in cultured cells. Kinetic analysis of expression and subcellular localization in mammalian cells, combined with cell-free in vitro translation assays, revealed that altered protein expression stemmed from differences in cellular protein stability rather than biosynthetic rates. Site-specific mutagenesis studies targeting other cysteines of the hG6Pase-α S298C variant suggest the observed improvements in stability are not due to additional disulfide bond formation. The glycosylation at Asparagine (N)-96 is critical in maintaining enzymatic activity and mutations at position 298 mainly affected glycosylated forms of hG6Pase-α. Finally, proteasome inhibition by lactacystin improved expression levels of unstable hG6Pase-α variants. Taken together, these data uncover a critical role for a single amino acid substitution impacting the stability of G6Pase-α and provide insights into the molecular genetics of GSD1a and protein engineering for therapeutic development.
Assuntos
Glucose-6-Fosfatase , Doença de Depósito de Glicogênio Tipo I , Animais , Humanos , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/química , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/metabolismo , Cinética , Glucose/metabolismo , Aminoácidos , Mamíferos/metabolismoRESUMO
BACKGROUND AND OBJECTIVE: Neutrophil elastase (NE), is an important host defence against lung pathogens. Maintaining a homeostatic balance between proteases such as NE and anti-proteases such as secretory leukocyte protease inhibitor (SLPI), is important to prevent tissue damage. In the cystic fibrosis (CF) lung, elevated protease levels and impaired anti-protease defences contribute to tissue destruction. METHODS: We assessed lung function and sputum SLPI and NE levels from Pseudomonas aeruginosa infected and non-infected CF patients (median age 20 years at recruitment) during different phases of clinical disease. Healthy, never smokers served as healthy controls (HC). Sputum total cell counts (TCC) and colony forming units of P. aeruginosa were also determined in each sputum sample. RESULTS: Compared to HC, sputum SLPI was significantly reduced and NE increased in all CF subjects whether infected with P. aeruginosa or not, but the presence of P. aeruginosa worsened these parameters. Females with chronic P. aeruginosa infection had significantly lower sputum SLPI levels than males (p < 0.001). Higher sputum SLPI levels were associated with a significantly reduced rate of longitudinal decline in FEV1 % predicted (p < 0.05). Antibiotic treatment in P. aeruginosa-infected patients significantly decreased sputum TCC and increased SLPI levels, which positively correlated with improved lung function. CONCLUSION: Airway SLPI is deficient in CF, which appears more marked in P. aeruginosa-infected female patients. Importantly, a reduced anti-protease to protease ratio is associated with accelerated lung function decline. Treatment of an exacerbation is accompanied by partial recovery of anti-protease defences and significant improvement in lung function, an important clinical outcome.
Assuntos
Fibrose Cística , Masculino , Humanos , Feminino , Adulto Jovem , Adulto , Fibrose Cística/complicações , Peptídeo Hidrolases , Pulmão , Elastase de Leucócito , Escarro , Testes de Função Respiratória , Pseudomonas aeruginosaRESUMO
BACKGROUND: Defective chloride transport in airway epithelial cells (AECs) and the associated lung disease are the main causes of morbidity and early mortality in cystic fibrosis (CF). Abnormal airway iron homeostasis and the presence of lipid peroxidation products, indicative of oxidative stress, are features of CF lung disease. RESULTS: Here, we report that CF AECs (IB3-1) are susceptible to ferroptosis, a type of cell death associated with iron accumulation and lipid peroxidation. Compared to isogenic CFTR corrected cells (C38), the IB3-1 cells showed increased susceptibility to cell death upon exposure to iron in the form of ferric ammonium citrate (FAC) and the ferroptosis inducer, erastin. This phenotype was accompanied by accumulation of intracellular ferrous iron and lipid peroxides and the extracellular release of malondialdehyde, all indicative of redox stress, and increased levels of lactate dehydrogenase in the culture supernatant, indicating enhanced cell injury. The ferric iron chelator deferoxamine (DFO) and the lipophilic antioxidant ferrostatin-1 inhibited FAC and erastin induced ferroptosis in IB3-1 cells. Glutathione peroxidase 4 (GPX4) expression was decreased in IB3-1 cells treated with FAC and erastin, but was unchanged in C38 AECs. Necroptosis appeared to be involved in the enhanced susceptibility of IB3-1 AECs to ferroptosis, as evidenced by partial cell death rescue with necroptosis inhibitors and enhanced mixed lineage kinase domain-like (MLKL) localisation to the plasma membrane. CONCLUSION: These studies suggest that the increased susceptibility of CF AECs to ferroptosis is linked to abnormal intracellular ferrous iron accumulation and reduced antioxidant defences. In addition, the process of ferroptotic cell death in CF AECs does not appear to be a single entity and for the first time we describe necroptosis as a potential contributory factor. Iron chelation and antioxidant treatments may be promising therapeutic interventions in cystic fibrosis.
Assuntos
Fibrose Cística , Ferroptose , Morte Celular , Células Epiteliais , Humanos , Peroxidação de LipídeosRESUMO
Pseudomonas aeruginosa is one of the principal pathogens implicated in respiratory infections of patients with cystic fibrosis (CF) and non-CF bronchiectasis. Previously, we demonstrated that impaired serum-mediated killing of P. aeruginosa was associated with increased severity of respiratory infections in patients with non-CF bronchiectasis. This inhibition was mediated by high titers of O-antigen-specific IgG2 antibodies that cloak the surface of the bacteria, blocking access to the membrane. Infection-related symptomatology was ameliorated in patients by using plasmapheresis to remove the offending antibodies. To determine if these inhibitory "cloaking antibodies" were prevalent in patients with CF, we investigated 70 serum samples from patients with P. aeruginosa infection and 5 from those without P. aeruginosa infection. Of these patients, 32% had serum that inhibited the ability of healthy control serum to kill P. aeruginosa. Here, we demonstrate that this inhibition of killing requires O-antigen expression. Furthermore, we reveal that while IgG alone can inhibit the activity of healthy control serum, O-antigen-specific IgA in patient sera can also inhibit serum-killing. We found that antibody affinity, not just titer, was also important in the inhibition of serum-mediated killing. These studies provide novel insight into cloaking antibodies in human infection and may provide further options in CF and other diseases for treatment of recalcitrant P. aeruginosa infections.
Assuntos
Anticorpos Antibacterianos/imunologia , Fibrose Cística/complicações , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Lipopolissacarídeos/imunologia , Infecções por Pseudomonas/etiologia , Pseudomonas aeruginosa/imunologia , Proteínas do Sistema Complemento/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangueRESUMO
BACKGROUND: We tested if disrupting iron utilisation by P. aeruginosa by adding the Tris-buffered chelating agent CaEDTA to nebulised tobramycin would enhance bacterial clearance and improve lung function in CF patients. METHODS: In this double-blind, randomised controlled trial, 26 episodes (25 patients) with P. aeruginosa infection admitted to two CF centres for treatment of an acute pulmonary exacerbation were randomly assigned to receive either 75 mg CaEDTA in Tris-buffered saline or placebo (Tris-buffered saline) nebulised in combination with 250 mg tobramycin twice daily for six weeks followed with four week safety follow-up. Primary endpoints were safety, tolerability, and bacterial density of P. aeruginosa. A secondary endpoint was lung function. RESULTS: The study drug was well tolerated with adverse events comparable in both groups. The mean (SD) reduction in sputum P. aeruginosa count (log10 CFU/g) in the CaEDTA vs placebo group was 2·05 (2·57) vs 0·82 (2·71) at two weeks relative to admission (p = 0·39). The mean improvement in ppFEV1 was 16 vs 5 (p = 0·16); 11 vs 2 (p = 0·28); and 6 vs 2 percentage points (p = 0·47) at two, six, and ten weeks in CaEDTA and placebo groups, respectively. CONCLUSIONS: In this pilot study in CF patients, an increase in the reduction of sputum density of P. aeruginosa and an increase in ppFEV1 was observed in the group of patients who received Tris-CaEDTA added to inhaled tobramycin compared to the group who received inhaled tobramycin alone, although these differences were not statistically significant. The treatment was also shown to be safe.
Assuntos
Quelantes/administração & dosagem , Fibrose Cística/complicações , Ácido Edético/administração & dosagem , Infecções por Pseudomonas/tratamento farmacológico , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Tobramicina/administração & dosagem , Administração por Inalação , Adolescente , Adulto , Antibacterianos/administração & dosagem , Austrália , Criança , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nebulizadores e Vaporizadores , Trometamina/administração & dosagemRESUMO
BACKGROUND: Defective chloride transport in airway epithelial cells (AECs) and the associated lung disease are the main causes of morbidity and early mortality in cystic fibrosis (CF). Abnormal airway iron homeostasis and the presence of lipid peroxidation products, indicative of oxidative stress, are features of CF lung disease. RESULTS: Here, we report that CF AECs (IB3-1) are susceptible to ferroptosis, a type of cell death associated with iron accumulation and lipid peroxidation. Compared to isogenic CFTR corrected cells (C38), the IB3-1 cells showed increased susceptibility to cell death upon exposure to iron in the form of ferric ammonium citrate (FAC) and the ferroptosis inducer, erastin. This phenotype was accompanied by accumulation of intracellular ferrous iron and lipid peroxides and the extracellular release of malondialdehyde, all indicative of redox stress, and increased levels of lactate dehydrogenase in the culture supernatant, indicating enhanced cell injury. The ferric iron chelator defer-oxamine (DFO) and the lipophilic antioxidant ferrostatin-1 inhibited FAC and erastin induced ferroptosis in IB3-1 cells. Glutathione peroxidase 4 (GPX4) expression was decreased in IB3-1 cells treated with FAC and erastin, but was unchanged in C38 AECs. Necroptosis appeared to be involved in the enhanced susceptibility of IB3-1 AECs to ferroptosis, as evidenced by partial cell death rescue with necroptosis inhibitors and enhanced mixed lineage kinase domain-like (MLKL) localisation to the plasma membrane. CONCLUSION: These studies suggest that the increased susceptibility of CF AECs to ferroptosis is linked to abnormal intracellular ferrous iron accumulation and reduced antioxidant defences. In addition, the process of ferroptotic cell death in CF AECs does not appear to be a single entity and for the first time we describe necroptosis as a potential contributory factor. Iron chelation and antioxidant treatments may be promising therapeutic interventions in cystic fibrosis.
Assuntos
Humanos , Fibrose Cística , Ferroptose , Peroxidação de Lipídeos , Morte Celular , Células EpiteliaisRESUMO
BACKGROUND: The protein homeostasis (proteostasis) network maintains balanced protein synthesis, folding, transport, and degradation within a cell. Failure to maintain proteostasis is associated with aging and disease, leading to concerted efforts to study how the network responds to various proteotoxic stresses. This is often accomplished using ectopic overexpression of well-characterized, model misfolded protein substrates. However, how cells tolerate large-scale, diverse burden to the proteostasis network is not understood. Aneuploidy, the state of imbalanced chromosome content, adversely affects the proteostasis network by dysregulating the expression of hundreds of proteins simultaneously. Using aneuploid haploid yeast cells as a model, we address whether cells can tolerate large-scale, diverse challenges to the proteostasis network. RESULTS: Here we characterize several aneuploid Saccharomyces cerevisiae strains isolated from a collection of stable, randomly generated yeast aneuploid cells. These strains exhibit robust growth and resistance to multiple drugs which induce various forms of proteotoxic stress. Whole genome re-sequencing of the strains revealed this was not the result of genetic mutations, and transcriptome profiling combined with ribosome footprinting showed that genes are expressed and translated in accordance to chromosome copy number. In some strains, various facets of the proteostasis network are mildly upregulated without chronic activation of environmental stress response or heat shock response pathways. No severe defects were observed in the degradation of misfolded proteins, using model misfolded substrates of endoplasmic reticulum-associated degradation or cytosolic quality control pathways, and protein biosynthesis capacity was not impaired. CONCLUSIONS: We show that yeast strains of some karyotypes in the genetic background studied here can tolerate the large aneuploidy-associated burden to the proteostasis machinery without genetic changes, dosage compensation, or activation of canonical stress response pathways. We suggest that proteotoxic stress, while common, is not always an obligate consequence of aneuploidy, but rather certain karyotypes and genetic backgrounds may be able to tolerate the excess protein burden placed on the protein homeostasis machinery. This may help clarify how cancer cells are paradoxically both highly aneuploid and highly proliferative at the same time.
Assuntos
Aneuploidia , Mecanismo Genético de Compensação de Dose , Mutação , Proteostase , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Biossíntese de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Cystic fibrosis (CF) is a common life-limiting genetic condition. As the disease progresses access to specialist tertiary multi-disciplinary care services may become necessary. For patients living in regional/remote Australia, accessing such services may be a challenge. Here, we describe long-term outcomes for CF patients according to their access to specialist CF centre care in childhood.
Assuntos
Serviços de Saúde da Criança/organização & administração , Fibrose Cística/terapia , Acessibilidade aos Serviços de Saúde/estatística & dados numéricos , Infecções por Pseudomonas/terapia , Adolescente , Austrália , Criança , Fibrose Cística/complicações , Fibrose Cística/mortalidade , Feminino , Humanos , Transplante de Pulmão/estatística & dados numéricos , Masculino , Avaliação de Resultados em Cuidados de Saúde , Infecções por Pseudomonas/etiologia , Serviços de Saúde Rural/organização & administração , Especialização , Resultado do TratamentoRESUMO
Patient-derived isolates of the opportunistic pathogen Pseudomonas aeruginosa are frequently resistant to antibiotics due to the presence of sequence variants in resistance-associated genes. However, the frequency of antibiotic resistance and of resistance-associated sequence variants in environmental isolates of P. aeruginosa has not been well studied. Antimicrobial susceptibility testing (ciprofloxacin, ceftazidime, meropenem, tobramycin) of environmental (n=50) and cystic fibrosis (n=42) P. aeruginosa isolates was carried out. Following whole genome sequencing of all isolates, 25 resistance-associated genes were analysed for the presence of likely function-altering sequence variants. Environmental isolates were susceptible to all antibiotics with one exception, whereas patient-derived isolates had significant frequencies of resistance to each antibiotic and a greater number of likely resistance-associated genetic variants. These findings indicate that the natural environment does not act as a reservoir of antibiotic-resistant P. aeruginosa, supporting a model in which antibiotic susceptible environmental bacteria infect patients and develop resistance during infection.
Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Microbiologia Ambiental , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Ceftazidima/farmacologia , Ciprofloxacina/farmacologia , Fibrose Cística/microbiologia , Genômica , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Tobramicina/farmacologiaRESUMO
BACKGROUND AND OBJECTIVE: Genetic modifiers contribute to variable disease phenotype in cystic fibrosis (CF). We explored the association between mutations in the hemochromatosis (HFE) gene and disease severity in adults with CF. METHODS: HFE genotyping was performed in 163 adults with CF attending a single centre. Results were correlated with lung disease severity, prevalence of CF-related diabetes (CFRD) and history of meconium ileus (MI) or distal intestinal obstruction syndrome (DIOS). RESULTS: Subjects with the C282Y substitution in the HFE protein (C282Y mutation) had a lower FEV1 percentage predicted (54% versus 66%, pâ¯=â¯0.029) and accelerated rate of FEV1 decline (-110â¯mL versus -80â¯mL per year respectively, pâ¯<â¯0.001) compared to subjects with a normal HFE genotype. C282Y substitutions were associated with increased rates of CFRD (58% versus 33%, pâ¯=â¯0.026) and a trend towards increased MI or DIOS (38% versus 19%, pâ¯=â¯0.05). H63D HFE substitutions were associated with a more rapid rate of decline in forced vital capacity (pâ¯=â¯0.01) and increased risk of MI or DIOS (pâ¯=â¯0.02). CONCLUSIONS: In subjects with CF, the C282Y HFE substitution was associated with worse lung function, and increased rates of CFRD and gastrointestinal complications. The H63D HFE substitution also impacted on disease phenotype, but to a lesser extent. The results support a role for HFE gene mutations as modifiers of CF phenotype.
Assuntos
Substituição de Aminoácidos , Fibrose Cística/genética , Fibrose Cística/fisiopatologia , Proteína da Hemocromatose/genética , Adulto , Feminino , Estudos de Associação Genética , Humanos , Masculino , Índice de Gravidade de Doença , Capacidade VitalRESUMO
The lungs of individuals with cystic fibrosis (CF) become chronically infected with Pseudomonas aeruginosa that is difficult to eradicate by antibiotic treatment. Two key P. aeruginosa antibiotic resistance mechanisms are the AmpC ß-lactamase that degrades ß-lactam antibiotics and MexXYOprM, a three-protein efflux pump that expels aminoglycoside antibiotics from the bacterial cells. Levels of antibiotic resistance gene expression are likely to be a key factor in antibiotic resistance but have not been determined during infection. The aims of this research were to investigate the expression of the ampC and mexX genes during infection in patients with CF and in bacteria isolated from the same patients and grown under laboratory conditions. P. aeruginosa isolates from 36 CF patients were grown in laboratory culture and gene expression measured by reverse transcription-quantitative PCR (RT-qPCR). The expression of ampC varied over 20,000-fold and that of mexX over 2,000-fold between isolates. The median expression levels of both genes were increased by the presence of subinhibitory concentrations of antibiotics. To measure P. aeruginosa gene expression during infection, we carried out RT-qPCR using RNA extracted from fresh sputum samples obtained from 31 patients. The expression of ampC varied over 4,000-fold, while mexX expression varied over 100-fold, between patients. Despite these wide variations, median levels of expression of ampC in bacteria in sputum were similar to those in laboratory-grown bacteria. The expression of mexX was higher in sputum than in laboratory-grown bacteria. Overall, our data demonstrate that genes that contribute to antibiotic resistance can be highly expressed in patients, but there is extensive isolate-to-isolate and patient-to-patient variation.
Assuntos
Fibrose Cística/microbiologia , Resistência Microbiana a Medicamentos/genética , Pseudomonas aeruginosa/genética , Adolescente , Adulto , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Criança , Fibrose Cística/tratamento farmacológico , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana/métodos , Pessoa de Meia-Idade , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Escarro/microbiologia , Adulto Jovem , beta-Lactamases/genéticaRESUMO
The increasing global incidence and prevalence of non-tuberculous mycobacteria (NTM) infection is of growing concern. New evidence of person-to-person transmission of multidrug-resistant NTM adds to the global concern. The reason why certain individuals are at risk of NTM infections is unknown. Using high definition flow cytometry, we studied the immune profiles of two groups that are at risk of Mycobacterium abscessus complex infection and matched controls. The first group was cystic fibrosis (CF) patients and the second group was elderly individuals. CF individuals with active M. abscessus complex infection or a history of M. abscessus complex infection exhibited a unique surface T cell phenotype with a marked global deficiency in TNFα production during mitogen stimulation. Importantly, immune-based signatures were identified that appeared to predict at baseline the subset of CF individuals who were at risk of M. abscessus complex infection. In contrast, elderly individuals with M. abscessus complex infection exhibited a separate T cell phenotype underlined by the presence of exhaustion markers and dysregulation in type 1 cytokine release during mitogen stimulation. Collectively, these data suggest an association between T cell signatures and individuals at risk of M. abscessus complex infection, however, validation of these immune anomalies as robust biomarkers will require analysis on larger patient cohorts.
RESUMO
We have recently shown that Pseudomonas aeruginosa, an opportunistic pathogen that chronically infects the lungs of patients with cystic fibrosis (CF) and other forms of lung disease, is extremely efficient in recruiting zinc from the environment and that this capability is required for its ability to cause acute lung infections in mice. To verify that P. aeruginosa faces zinc shortage when colonizing the lungs of human patients, we analyzed the expression of three genes that are highly induced under conditions of zinc deficiency (zrmA, dksA2 and rpmE2), in bacteria in the sputum of patients with inflammatory lung disease. All three genes were expressed in all the analyzed sputum samples to a level much higher than that of bacteria grown in zinc-containing laboratory medium, supporting the hypothesis that P. aeruginosa is under zinc starvation during lung infections. We also found that the expression of several virulence traits that play a central role in the ability of P. aeruginosa to colonize the lung is affected by disruption of the most important zinc importing systems. Virulence features dependent on zinc intake include swarming and swimming motility and the ability to form biofilms. Furthermore, alterations in zinc assimilation interfere with the synthesis of the siderophore pyoverdine, suggesting that zinc recruitment could modulate iron uptake and affect siderophore-mediated cell signaling. Our results reveal that zinc uptake is likely to play a key role in the ability of P. aeruginosa to cause chronic lung infections and strongly modulates critical virulence traits of the pathogen. Taking into account the recent discovery that zinc uptake in P. aeruginosa is promoted by the release of a small molecular weight molecule showing high affinity for zinc, our data suggest novel and effective possibilities to control lung infections by these bacteria.
Assuntos
Fibrose Cística/metabolismo , Pneumopatias/metabolismo , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Zinco/metabolismo , Perfilação da Expressão Gênica , Humanos , Pseudomonas aeruginosa/genética , VirulênciaRESUMO
Astrocyte elevated gene-1 (AEG-1), an oncogene whose overexpression promotes tumor cell proliferation, angiogenesis, invasion, and enhanced chemoresistance, is thought to function primarily as a scaffolding protein, regulating PI3K/Akt and Wnt/ß-catenin signaling pathways. Here we report that AEG-1 is an endoplasmic reticulum (ER) resident integral membrane RNA-binding protein (RBP). Examination of the AEG-1 RNA interactome by HITS-CLIP and PAR-CLIP methodologies revealed a high enrichment for endomembrane organelle-encoding transcripts, most prominently those encoding ER resident proteins, and within this cohort, for integral membrane protein-encoding RNAs. Cluster mapping of the AEG-1/RNA interaction sites demonstrated a normalized rank order interaction of coding sequence >5' untranslated region, with 3' untranslated region interactions only weakly represented. Intriguingly, AEG-1/membrane protein mRNA interaction sites clustered downstream from encoded transmembrane domains, suggestive of a role in membrane protein biogenesis. Secretory and cytosolic protein-encoding mRNAs were also represented in the AEG-1 RNA interactome, with the latter category notably enriched in genes functioning in mRNA localization, translational regulation, and RNA quality control. Bioinformatic analyses of RNA-binding motifs and predicted secondary structure characteristics indicate that AEG-1 lacks established RNA-binding sites though shares the property of high intrinsic disorder commonly seen in RBPs. These data implicate AEG-1 in the localization and regulation of secretory and membrane protein-encoding mRNAs and provide a framework for understanding AEG-1 function in health and disease.
Assuntos
Moléculas de Adesão Celular/metabolismo , Retículo Endoplasmático/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Moléculas de Adesão Celular/química , Retículo Endoplasmático/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas Intrinsicamente Desordenadas , Proteínas de Membrana/genética , Proteínas Oncogênicas/química , Proteínas Oncogênicas/metabolismo , RNA Mensageiro/química , Proteínas de Ligação a RNA/química , Análise de Sequência de RNARESUMO
A primary question in dengue virus (DENV) biology is the molecular strategy for recruitment of host cell protein synthesis machinery. Here, we combined cell fractionation, ribosome profiling, and transcriptome sequencing (RNA-seq) to investigate the subcellular organization of viral genome translation and replication as well as host cell translation and its response to DENV infection. We report that throughout the viral life cycle, DENV plus- and minus-strand RNAs were highly partitioned to the endoplasmic reticulum (ER), identifying the ER as the primary site of DENV translation. DENV infection was accompanied by an ER compartment-specific remodeling of translation, where ER translation capacity was subverted from host transcripts to DENV plus-strand RNA, particularly at late stages of infection. Remarkably, translation levels and patterns in the cytosol compartment were only modestly affected throughout the experimental time course of infection. Comparisons of ribosome footprinting densities of the DENV plus-strand RNA and host mRNAs indicated that DENV plus-strand RNA was only sparsely loaded with ribosomes. Combined, these observations suggest a mechanism where ER-localized translation and translational control mechanisms, likely cis encoded, are used to repurpose the ER for DENV virion production. Consistent with this view, we found ER-linked cellular stress response pathways commonly associated with viral infection, namely, the interferon response and unfolded protein response, to be only modestly activated during DENV infection. These data support a model where DENV reprograms the ER protein synthesis and processing environment to promote viral survival and replication while minimizing the activation of antiviral and proteostatic stress response pathways.IMPORTANCE DENV, a prominent human health threat with no broadly effective or specific treatment, depends on host cell translation machinery for viral replication, immune evasion, and virion biogenesis. The molecular mechanism by which DENV commandeers the host cell protein synthesis machinery and the subcellular organization of DENV replication and viral protein synthesis is poorly understood. Here, we report that DENV has an almost exclusively ER-localized life cycle, with viral replication and translation largely restricted to the ER. Surprisingly, DENV infection largely affects only ER-associated translation, with relatively modest effects on host cell translation in the cytosol. DENV RNA translation is very inefficient, likely representing a strategy to minimize disruption of ER proteostasis. Overall these findings demonstrate that DENV has evolved an ER-compartmentalized life cycle; thus, targeting the molecular signatures and regulation of the DENV-ER interaction landscape may reveal strategies for therapeutic intervention.