Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5817, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987270

RESUMO

Respiratory infections caused by the human fungal pathogen Aspergillus fumigatus are a major cause of mortality for immunocompromised patients. Exposure to these pathogens occurs through inhalation, although the role of the respiratory epithelium in disease pathogenesis has not been fully defined. Employing a primary human airway epithelial model, we demonstrate that fungal melanins potently block the post-translational secretion of the chemokines CXCL1 and CXCL8 independent of transcription or the requirement of melanin to be phagocytosed, leading to a significant reduction in neutrophil recruitment to the apical airway both in vitro and in vivo. Aspergillus-derived melanin, a major constituent of the fungal cell wall, dampened airway epithelial chemokine secretion in response to fungi, bacteria, and exogenous cytokines. Furthermore, melanin muted pathogen-mediated calcium fluxing and hindered actin filamentation. Taken together, our results reveal a critical role for melanin interaction with airway epithelium in shaping the host response to fungal and bacterial pathogens.


Assuntos
Aspergillus fumigatus , Cálcio , Quimiocina CXCL1 , Interleucina-8 , Melaninas , Melaninas/metabolismo , Humanos , Interleucina-8/metabolismo , Cálcio/metabolismo , Quimiocina CXCL1/metabolismo , Animais , Mucosa Respiratória/metabolismo , Mucosa Respiratória/microbiologia , Camundongos , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Quimiocinas/metabolismo , Camundongos Endogâmicos C57BL
2.
Front Cell Infect Microbiol ; 13: 1241770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37724291

RESUMO

Introduction: Invasive aspergillosis (IA) is the most prevalent infectious complication in patients with chronic granulomatous disease (CGD). Yet, understanding of fungal pathogenesis in the CGD host remains limited, particularly with regards to A. nidulans infection. Methods: We have used a murine model of X-linked CGD to investigate how the pathogenesis of IA varies between A. fumigatus and A. nidulans, comparing infection in both X-linked CGD (gp91-/-) mice and their parent C57BL/6 (WT) mice. A 14-colour flow cytometry panel was used to assess the cell dynamics over the course of infection, with parallel assessment of pulmonary cytokine production and lung histology. Results: We observed a lack of association between pulmonary pathology and infection outcome in gp91-/- mice, with no significant mortality in A. nidulans infected mice. An overwhelming and persistent neutrophil recruitment and IL-1 release in gp91-/- mice following both A. fumigatus and A. nidulans infection was observed, with divergent macrophage, dendritic cell and eosinophil responses and distinct cytokine profiles between the two infections. Conclusion: We have provided an in-depth characterisation of the immune response to pulmonary aspergillosis in an X-linked CGD murine model. This provides the first description of distinct pulmonary inflammatory environments in A. fumigatus and A. nidulans infection in X-linked CGD and identifies several new avenues for further research.


Assuntos
Aspergilose , Aspergillus nidulans , Doença Granulomatosa Crônica , Infecções Fúngicas Invasivas , Animais , Camundongos , Camundongos Endogâmicos C57BL , Aspergillus fumigatus/genética , Aspergillus nidulans/genética , Doença Granulomatosa Crônica/complicações , Modelos Animais de Doenças , Citocinas
3.
Sci Adv ; 7(3)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523895

RESUMO

Macrophages provide a first line of defense against microorganisms, and while some mechanisms to kill pathogens such as the oxidative burst are well described, others are still undefined or unknown. Here, we report that the Rab32 guanosine triphosphatase and its guanine nucleotide exchange factor BLOC-3 (biogenesis of lysosome-related organelles complex-3) are central components of a trafficking pathway that controls both bacterial and fungal intracellular pathogens. This host-defense mechanism is active in both human and murine macrophages and is independent of well-known antimicrobial mechanisms such as the NADPH (reduced form of nicotinamide adenine dinucleotide phosphate)-dependent oxidative burst, production of nitric oxide, and antimicrobial peptides. To survive in human macrophages, Salmonella Typhi actively counteracts the Rab32/BLOC-3 pathway through its Salmonella pathogenicity island-1-encoded type III secretion system. These findings demonstrate that the Rab32/BLOC-3 pathway is a novel and universal host-defense pathway and protects mammalian species from various pathogens.


Assuntos
Salmonella typhi , Proteínas rab de Ligação ao GTP , Animais , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Lisossomos/metabolismo , Macrófagos/metabolismo , Mamíferos/metabolismo , Camundongos , Proteínas rab de Ligação ao GTP/metabolismo
4.
Front Immunol ; 11: 2071, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013877

RESUMO

We specify the clinical features of a spontaneous experimental autoimmune uveitis (EAU) model, in which foreign hen-egg lysozyme (HEL) is expressed in the retina, controlled by the promoter for interphotoreceptor retinol binding protein (IRBP). We previously reported 100% P21 (post-partum day) IRBP:HEL single transgenic (sTg) mice, when crossed to transgenic T cell receptor mice (3A9) generating the double transgenic (dTg) genotype, develop EAU despite profound lymphopenia (thymic HEL-specific T cell deletion). In this work, we characterized the immune component of this model and found conventional dTg CD4+ T cells were less anergic than those from 3A9 controls. Furthermore, prior in vitro HEL-activation of 3A9 anergic T cells (Tan) rendered them uveitogenic upon adoptive transfer (Tx) to sTg mice, while antigen-experienced (AgX, dTg), but not naïve (3A9) T cells halted disease in P21 dTg mice. Flow cytometric analysis of the AgX cells elucidated the underlying pathology: FoxP3+CD25hiCD4+ T regulatory cells (Treg) comprised ∼18%, while FR4+CD73+FoxP3-CD25lo/-CD4+ Tan comprised ∼1.2% of total cells. Further Treg-enrichment (∼80%) of the AgX population indicated FoxP3+CD25hiCD4+ Treg played a key role in EAU-suppression while FoxP3-CD25lo/-CD4+ T cells did not. Here we present the novel concept of dual immunological tolerance where spontaneous EAU is due to escape from anergy with consequent failure of Treg induction and subsequent imbalance in the [Treg:Teffector] cell ratio. The reduced numbers of Tan, normally sustaining Treg to prevent autoimmunity, are the trigger for disease, while immune homeostasis can be restored by supplementation with AgX, but not naïve, antigen-specific Treg.


Assuntos
Doenças Autoimunes/imunologia , Imunoterapia Adotiva/métodos , Retina/patologia , Linfócitos T Reguladores/imunologia , Uveíte/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Proteínas do Olho/imunologia , Fatores de Transcrição Forkhead/metabolismo , Humanos , Tolerância Imunológica , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas de Ligação ao Retinol/imunologia , Linfócitos T Reguladores/transplante
5.
Nature ; 555(7696): 382-386, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29489751

RESUMO

Resistance to infection is critically dependent on the ability of pattern recognition receptors to recognize microbial invasion and induce protective immune responses. One such family of receptors are the C-type lectins, which are central to antifungal immunity. These receptors activate key effector mechanisms upon recognition of conserved fungal cell-wall carbohydrates. However, several other immunologically active fungal ligands have been described; these include melanin, for which the mechanism of recognition is hitherto undefined. Here we identify a C-type lectin receptor, melanin-sensing C-type lectin receptor (MelLec), that has an essential role in antifungal immunity through recognition of the naphthalene-diol unit of 1,8-dihydroxynaphthalene (DHN)-melanin. MelLec recognizes melanin in conidial spores of Aspergillus fumigatus as well as in other DHN-melanized fungi. MelLec is ubiquitously expressed by CD31+ endothelial cells in mice, and is also expressed by a sub-population of these cells that co-express epithelial cell adhesion molecule and are detected only in the lung and the liver. In mouse models, MelLec was required for protection against disseminated infection with A. fumigatus. In humans, MelLec is also expressed by myeloid cells, and we identified a single nucleotide polymorphism of this receptor that negatively affected myeloid inflammatory responses and significantly increased the susceptibility of stem-cell transplant recipients to disseminated Aspergillus infections. MelLec therefore recognizes an immunologically active component commonly found on fungi and has an essential role in protective antifungal immunity in both mice and humans.


Assuntos
Aspergillus fumigatus/imunologia , Lectinas Tipo C/imunologia , Melaninas/imunologia , Naftóis/imunologia , Animais , Aspergilose/imunologia , Aspergilose/microbiologia , Aspergilose/prevenção & controle , Aspergillus fumigatus/química , Aspergillus fumigatus/patogenicidade , Parede Celular/química , Parede Celular/imunologia , Feminino , Humanos , Macrófagos/imunologia , Melaninas/química , Camundongos , Camundongos Endogâmicos C57BL , Naftóis/química , Ratos , Ratos Sprague-Dawley , Esporos Fúngicos/química , Esporos Fúngicos/imunologia , Especificidade por Substrato
6.
Microbes Infect ; 18(7-8): 505-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27005451

RESUMO

The heterodimeric mycobacterial receptors, macrophage C-type lectin (MCL) and macrophage inducible C-type lectin (Mincle), are upregulated at the cell surface following microbial challenge, but the mechanisms underlying this response are unclear. Here we report that microbial stimulation triggers Mincle expression through the myeloid differentiation primary response gene 88 (MyD88) pathway; a process that does not require MCL. Conversely, we show that MCL is constitutively expressed but retained intracellularly until Mincle is induced, whereupon the receptors form heterodimers which are translocated to the cell surface. Thus this "two-step" model for induction of these key receptors provides new insights into the underlying mechanisms of anti-mycobacterial immunity.


Assuntos
Interações Hospedeiro-Patógeno , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Mycobacterium/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/metabolismo , Animais , Células Cultivadas , Expressão Gênica , Lectinas Tipo C/genética , Macrófagos/imunologia , Macrófagos/microbiologia , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Receptores de Superfície Celular/genética , Receptores Imunológicos/genética
7.
Infect Immun ; 82(3): 1064-73, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24343653

RESUMO

Although Candida glabrata is an important pathogenic Candida species, relatively little is known about its innate immune recognition. Here, we explore the potential role of Dectin-2 for host defense against C. glabrata. Dectin-2-deficient (Dectin-2(-/-)) mice were found to be more susceptible to C. glabrata infections, showing a defective fungal clearance in kidneys but not in the liver. The increased susceptibility to infection was accompanied by lower production of T helper 1 (Th1) and Th17-derived cytokines by splenocytes of Dectin-2(-/-) mice, while macrophage-derived cytokines were less affected. These defects were associated with a moderate yet significant decrease in phagocytosis of the fungus by the Dectin-2(-/-) macrophages and neutrophils. Neutrophils of Dectin-2(-/-) mice also displayed lower production of reactive oxygen species (ROS) upon challenge with opsonized C. glabrata or C. albicans. This study suggests that Dectin-2 is important in host defense against C. glabrata and provides new insights into the host defense mechanisms against this important fungal pathogen.


Assuntos
Candida glabrata/imunologia , Candidíase/imunologia , Lectinas Tipo C/imunologia , Animais , Candida albicans/imunologia , Candidíase/microbiologia , Citocinas/imunologia , Feminino , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/microbiologia , Fagocitose/imunologia , Espécies Reativas de Oxigênio/imunologia , Células Th1/imunologia , Células Th1/microbiologia
8.
Nat Med ; 18(9): 1401-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22922409

RESUMO

Complement is an ancient danger-sensing system that contributes to host defense, immune surveillance and homeostasis. C5a and its G protein­coupled receptor mediate many of the proinflammatory properties of complement. Despite the key role of C5a in allergic asthma, autoimmune arthritis, sepsis and cancer, knowledge about its regulation is limited. Here we demonstrate that IgG1 immune complexes (ICs), the inhibitory IgG receptor FcγRIIB and the C-type lectin­like receptor dectin-1 suppress C5a receptor (C5aR) functions. IgG1 ICs promote the association of FcγRIIB with dectin-1, resulting in phosphorylation of Src homology 2 domain­containing inositol phosphatase (SHIP) downstream of FcγRIIB and spleen tyrosine kinase downstream of dectin-1. This pathway blocks C5aR-mediated ERK1/2 phosphorylation, C5a effector functions in vitro and C5a-dependent inflammatory responses in vivo, including peritonitis and skin blisters in experimental epidermolysis bullosa acquisita. Notably, high galactosylation of IgG N-glycans is crucial for this inhibitory property of IgG1 ICs, as it promotes the association between FcγRIIB and dectin-1. Thus, galactosylated IgG1 and FcγRIIB exert anti-inflammatory properties beyond their impact on activating FcγRs.


Assuntos
Doenças Autoimunes/imunologia , Complemento C5a/imunologia , Imunoglobulina G/imunologia , Lectinas Tipo C/metabolismo , Receptores de Complemento/metabolismo , Receptores de IgG/metabolismo , Análise de Variância , Animais , Anticorpos Monoclonais , Western Blotting , Cálcio/metabolismo , Adesão Celular/imunologia , Complemento C5a/administração & dosagem , Feminino , Inositol Polifosfato 5-Fosfatases , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lectinas Tipo C/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Receptor da Anafilatoxina C5a , Receptores de IgG/genética , Receptores de IgG/imunologia , Ressonância de Plasmônio de Superfície , Quinase Syk
9.
J Biol Chem ; 287(31): 25964-74, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22689578

RESUMO

CLECSF8 is a poorly characterized member of the "Dectin-2 cluster" of C-type lectin receptors and was originally thought to be expressed exclusively by macrophages. We show here that CLECSF8 is primarily expressed by peripheral blood neutrophils and monocytes and weakly by several subsets of peripheral blood dendritic cells. However, expression of this receptor is lost upon in vitro differentiation of monocytes into dendritic cells or macrophages. Like the other members of the Dectin-2 family, which require association of their transmembrane domains with signaling adaptors for surface expression, CLECSF8 is retained intracellularly when expressed in non-myeloid cells. However, we demonstrate that CLECSF8 does not associate with any known signaling adaptor molecule, including DAP10, DAP12, or the FcRγ chain, and we found that the C-type lectin domain of CLECSF8 was responsible for its intracellular retention. Although CLECSF8 does not contain a signaling motif in its cytoplasmic domain, we show that this receptor is capable of inducing signaling via Syk kinase in myeloid cells and that it can induce phagocytosis, proinflammatory cytokine production, and the respiratory burst. These data therefore indicate that CLECSF8 functions as an activation receptor on myeloid cells and associates with a novel adaptor molecule. Characterization of the CLECSF8-deficient mice and screening for ligands using oligosaccharide microarrays did not provide further insights into the physiological function of this receptor.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lectinas Tipo C/metabolismo , Células Mieloides/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptores Imunológicos/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Lectinas Tipo C/química , Camundongos , Células Mieloides/enzimologia , Células Mieloides/fisiologia , Especificidade de Órgãos , Fagocitose , Cultura Primária de Células , Estrutura Terciária de Proteína , Transporte Proteico , Receptores Imunológicos/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Explosão Respiratória , Transdução de Sinais , Quinase Syk , Fator de Necrose Tumoral alfa/metabolismo
10.
Curr Opin Immunol ; 21(1): 30-7, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19223162

RESUMO

The beta-glucan receptor Dectin-1 is an archetypical non-toll-like pattern recognition receptor expressed predominantly by myeloid cells, which can induce its own intracellular signalling and can mediate a variety of cellular responses, such as cytokine production. Recent identification of the components of these signalling pathways, such as Syk kinase, CARD9 and Raf-1, has provided novel insights into the molecular mechanisms underlying Dectin-1 function. Furthermore, a broader appreciation of the cellular responses mediated by this receptor and the effects of interactions with other receptors, including the TLRs, have greatly furthered our understanding of innate immunity and how this drives the development of adaptive immunity, particularly Th17 responses. Recent studies have highlighted the importance of Dectin-1 in anti-fungal immunity, in both mice and humans, and have suggested a possible involvement of this receptor in the control of mycobacterial infections.


Assuntos
Proteínas de Membrana/imunologia , Infecções por Mycobacterium/imunologia , Micoses/imunologia , Células Mieloides/metabolismo , Proteínas do Tecido Nervoso/imunologia , Células Th1/imunologia , Animais , Proteínas Adaptadoras de Sinalização CARD/imunologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Humanos , Imunidade Celular , Imunidade Inata , Interleucina-17/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lectinas Tipo C , Proteínas de Membrana/metabolismo , Camundongos , Células Mieloides/imunologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Tirosina Quinases/imunologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-raf/imunologia , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais , Quinase Syk , Células Th1/metabolismo , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo
11.
Invest Ophthalmol Vis Sci ; 48(5): 2162-71, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17460275

RESUMO

PURPOSE: A functioning lymphatic system is necessary not only to permit the organism to mount a rapid and effective immune response but, even more so, to maintain tissue fluid homeostasis. However, no clear evidence of lymphatic vessels draining intraocular and orbital tissues--retina, choroid, sclera, and extraocular muscles--exists. METHODS: Ocular tissue flatmounts from normal or enhanced green fluorescence protein (EGFP) chimeric mice were immunostained for lymphatic endothelium hyaluronan receptor (LYVE-1, a routinely used lymphatic endothelial marker), podoplanin, Flt4/VEGFR3, Sca-1, CD11b, or F4/80 and were observed by confocal microscopy. Single-cell suspensions from ocular tissues were also prepared and were analyzed by flow cytometry. RESULTS: Lymphatic vessels were detected in the posterior regions of the extraocular muscles and the connective tissues of the extraocular muscle cones in the normal mouse. No typical lymphatic vessels were found within the eye. A large population of LYVE-1(+) nonendothelial cells, distributed as single cells, was detected in all ocular tissues except the central cornea. These cells also express another lymphatic endothelial cell marker, Flt4/VEGFR3, but not podoplanin, and they have hyaluronan-binding ability. Bone marrow chimerism studies indicated that the LYVE-1(+) cell populations are bone marrow derived and have a slow turnover in ocular tissues (3-6 months). Phenotype analysis revealed that nonendothelial LYVE-1(+)cells in the sclera, choroid, and iris included CD11b(+)F4/80(+) macrophages, CD11b(+)F4/80(-) macrophages, and CD11b(-)F4/80(-) bone marrow-derived cells. All LYVE-1(+) cells in the retina were CD11b(+)F4/80(+) macrophages. Cells in the limbus and the iris root also express Sca-1, suggesting that they are hematopoietic lymphatic vessel progenitor cells. CONCLUSIONS: These observations suggest that a lymphatic system exists for the transport of immune cells and fluids from the posterior segment of the eye, that ocular tissues are rich in bone marrow-derived LYVE-1(+) macrophages under normal physiological conditions, and that a subpopulation of these cells may represent resident precursor cells necessary for the de novo formation of ocular/orbital lymphatic vessels in pathologic conditions.


Assuntos
Olho/metabolismo , Glicoproteínas/metabolismo , Vasos Linfáticos/metabolismo , Macrófagos/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Ataxina-1 , Ataxinas , Biomarcadores/metabolismo , Antígeno CD11b/metabolismo , Quimera , Túnica Conjuntiva/metabolismo , Tecido Conjuntivo/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde , Limbo da Córnea/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Proteínas do Tecido Nervoso , Proteínas Nucleares , Músculos Oculomotores/metabolismo , Úvea/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
J Immunol ; 177(9): 5840-51, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17056508

RESUMO

Using a novel mAb specific for mouse Ly49B, we report here that Ly49B, the last remaining member of the C57 Ly49 family to be characterized, is expressed at low levels on approximately 1.5% of spleen cells, none which are NK cells or T cells but which instead belong to several distinct subpopulations of myeloid cells defined by expression of CD11b and different levels of Gr1. Much larger proportions of bone marrow and peritoneal cells expressed Ly49B, all being CD11b+ and comprising multiple subpopulations defined by light scatter, F4/80, and Gr1 expression. Costaining for Ly49Q, also expressed on myeloid cells, revealed that Ly49B and Ly49Q were most strongly expressed on nonoverlapping subpopulations, Ly49Q(high) cells being mostly B220+CD4+ and/or CD8+, Ly49B+ cells lacking these markers. Myeloid populations that developed from bone marrow progenitors in vitro frequently coexpressed both Ly49B and Ly49Q, and Ly49B expression could be up-regulated by LPS, alpha-IFN, and gamma-IFN, often independently of Ly49Q. PCR analysis revealed that cultured NK cells and T cells contained Ly49B transcripts, and Ly49B expression could be detected on NK cells cultured in IL-12 plus IL-18, and on an immature NK cell line. Immunohistochemical studies showed that Ly49B expression in tissues overlapped with but was distinct from that of all other myeloid molecules examined, being particularly prominent in the lamina propria and dome of Peyer's patches, implicating an important role of Ly49B in gut immunobiology. In transfected cells, Ly49B was found to associate with SHP-1, SHP-2, and SHIP in a manner strongly regulated by intracellular phosphorylation events.


Assuntos
Antígenos Ly/metabolismo , Lectinas Tipo C/metabolismo , Células Mieloides/imunologia , Baço/citologia , Animais , Anticorpos Monoclonais/imunologia , Antígenos de Diferenciação/análise , Antígenos Ly/análise , Antígenos Ly/genética , Antígeno CD11b/análise , Feminino , Inositol Polifosfato 5-Fosfatases , Interferon-alfa/farmacologia , Interferon gama/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Matadoras Naturais/imunologia , Lectinas Tipo C/análise , Lectinas Tipo C/genética , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Dados de Sequência Molecular , Células Mieloides/efeitos dos fármacos , Subfamília A de Receptores Semelhantes a Lectina de Células NK , Nódulos Linfáticos Agregados/citologia , Nódulos Linfáticos Agregados/imunologia , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteínas Tirosina Fosfatases/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Ratos , Receptores de Quimiocinas/análise , Receptores Imunológicos/metabolismo , Receptores Semelhantes a Lectina de Células NK , Baço/imunologia , Linfócitos T/imunologia , Transcrição Gênica , Transfecção
13.
Eur J Immunol ; 36(8): 2159-69, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16838277

RESUMO

C-type lectins are the most diverse and prevalent lectin family in immunity. Particular interest has recently been attracted by the C-type lectin-like receptors on NK cells, which appear to regulate the activation/inhibitory balance of these cells, controlling cytotoxicity and cytokine production. We previously identified a human C-type lectin-like receptor, closely related to both the beta-glucan receptor and the lectin-like receptor for oxidized-LDL, named MICL (myeloid inhibitory C-type lectin-like receptor), which we had shown using chimeric analysis to function as an inhibitory receptor. Using a novel MICL-specific monoclonal antibody, we show here that human MICL is expressed primarily on myeloid cells, including granulocytes, monocytes, macrophages, and dendritic cells. Although MICL was highly N-glycosylated in primary cells, the level of glycosylation was found to vary between cell types. MICL surface expression was down-regulated during inflammatory/activation conditions in vitro, as well as during an in vivo model of acute inflammation, which we characterize here. This suggests that human MICL may be involved in the control of myeloid cell activation during inflammation.


Assuntos
Regulação para Baixo , Lectinas Tipo C/metabolismo , Receptores Mitogênicos/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glicosilação , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos
14.
Eur J Immunol ; 35(5): 1539-47, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15816015

RESUMO

We identified the C-type-lectin-like receptor, Dectin-1, as the major receptor for fungal beta-glucans on murine macrophages and have demonstrated that it plays a significant role in the cellular response to these carbohydrates. Using two novel, isoform-specific mAb, we show here that human Dectin-1, the beta-glucan receptor (betaGR), is widely expressed and present on all monocyte populations as well as macrophages, DC, neutrophils and eosinophils. This receptor is also expressed on B cells and a subpopulation of T cells, demonstrating that human Dectin-1 is not myeloid restricted. Both major functional betaGR isoforms - betaGR-A and betaGR-B - were expressed by these cell populations in peripheral blood; however, only betaGR-B was significantly expressed on mature monocyte-derived macrophages and immature DC, suggesting cell-specific control of isoform expression. Inflammatory cells, recruited in vivo using a new skin-window technique, demonstrated that Dectin-1 expression was not significantly modulated on macrophages during inflammation, but is decreased on recruited granulocytes. Despite previous reports detailing the involvement of other beta-glucan receptors on mature human macrophages, we have demonstrated that Dectin-1 acted as the major beta-glucan receptor on these cells and contributed to the inflammatory response to these carbohydrates.


Assuntos
Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Animais , Anticorpos Monoclonais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Eosinófilos/imunologia , Eosinófilos/metabolismo , Citometria de Fluxo , Humanos , Lectinas Tipo C , Macrófagos/imunologia , Proteínas de Membrana/imunologia , Camundongos , Proteínas do Tecido Nervoso/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Receptores Imunológicos/imunologia , Especificidade da Espécie
15.
J Immunol ; 171(9): 4569-73, 2003 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-14568930

RESUMO

Dectin-1 is the major macrophage receptor for beta-glucans and generates a proinflammatory response through the recognition of these carbohydrates on fungal pathogens. We have examined the effects of cytokines and other agents on the expression and functions of dectin-1 in both resident and elicited murine peritoneal macrophages (Mphi). Dectin-1 expression was found to be highly up-regulated by GM-CSF and by the cytokines that induce alternative macrophage activation, IL-4 and IL-13. In contrast, IL-10, LPS, and dexamethasone, but not IFN-gamma, down-regulated the expression of this receptor. Modulation of dectin-1 receptor levels correlated with the ability of these macrophages to bind zymosan and significantly affected the contribution of this receptor to the resultant proinflammatory response, as measured by the production of TNF-alpha, although some Mphi-specific differences were observed. These results correlate with the known effects of these cytokines and other agents on the ability of the immune system to recognize and respond to fungal pathogens.


Assuntos
Dexametasona/farmacologia , Regulação para Baixo/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Interleucina-10/fisiologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/imunologia , Proteínas de Membrana/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Regulação para Cima/imunologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/fisiologia , Animais , Combinação de Medicamentos , Imunossupressores/farmacologia , Interleucina-13/farmacologia , Interleucina-4/farmacologia , Lectinas Tipo C , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/fisiologia , Zimosan/metabolismo
16.
J Immunol ; 169(7): 3876-82, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12244185

RESUMO

We recently identified dectin-1 (betaGR) as a major beta-glucan receptor on leukocytes and demonstrated that it played a significant role in the non-opsonic recognition of soluble and particulate beta-glucans. Using a novel mAb (2A11) raised against betaGR, we show here that the receptor is not dendritic cell-restricted as first reported, but is broadly expressed, with highest surface expression on populations of myeloid cells (monocyte/macrophage (Mphi) and neutrophil lineages). Dendritic cells and a subpopulation of T cells also expressed the betaGR, but at lower levels. Alveolar Mphi, like inflammatory Mphi, exhibited the highest surface expression of betaGR, indicative of a role for this receptor in immune surveillance. In contrast, resident peritoneal Mphi expressed much lower levels of betaGR on the cell surface. Characterization of the nonopsonic recognition of zymosan by resident peritoneal Mphi suggested the existence of an additional beta-glucan-independent mechanism of zymosan binding that was not observed on elicited or bone marrow-derived Mphi. Although this recognition could be inhibited by mannan, we were able to exclude involvement of the Mphi mannose receptor and complement receptor 3 in this process. These observations imply the existence of an additional mannan-dependent receptor involved in the recognition of zymosan by resident peritoneal Mphi.


Assuntos
Proteínas de Membrana/biossíntese , Células Mieloides/imunologia , Células Mieloides/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Receptores Imunológicos/biossíntese , beta-Glucanas , Células 3T3 , Animais , Líquido Ascítico/imunologia , Líquido Ascítico/metabolismo , Líquido Ascítico/patologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Linhagem Celular , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Membrana Celular/genética , Membrana Celular/imunologia , Membrana Celular/metabolismo , Glucanos/metabolismo , Lectinas Tipo C , Leucemia P388 , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Proteínas de Membrana/sangue , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/metabolismo , Proteínas do Tecido Nervoso/sangue , Proteínas do Tecido Nervoso/genética , Neutrófilos/imunologia , Neutrófilos/metabolismo , Proteínas Opsonizantes/metabolismo , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , RNA Mensageiro/biossíntese , Receptores Imunológicos/sangue , Receptores Imunológicos/genética , Baço/citologia , Baço/imunologia , Baço/metabolismo , Zimosan/metabolismo
17.
J Exp Med ; 196(3): 407-12, 2002 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-12163569

RESUMO

Zymosan is a beta-glucan- and mannan-rich particle that is widely used as a cellular activator for examining the numerous responses effected by phagocytes. The macrophage mannose receptor (MR) and complement receptor 3 (CR3) have historically been considered the major macrophage lectins involved in the nonopsonic recognition of these yeast-derived particles. Using specific carbohydrate inhibitors, we show that a beta-glucan receptor, but not the MR, is a predominant receptor involved in this process. Furthermore, nonopsonic zymosan binding was unaffected by genetic CD11b deficiency or a blocking monoclonal antibody (mAb) against CR3, demonstrating that CR3 was not the beta-glucan receptor mediating this activity. To address the role of the recently described beta-glucan receptor, Dectin-1, we generated a novel anti-Dectin-1 mAb, 2A11. Using this mAb, we show here that Dectin-1 was almost exclusively responsible for the beta-glucan-dependent, nonopsonic recognition of zymosan by primary macro-phages. These findings define Dectin-1 as the leukocyte beta-glucan receptor, first described over 50 years ago, and resolves the long-standing controversy regarding the identity of this important molecule. Furthermore, these results identify Dectin-1 as a new target for examining the immunomodulatory properties of beta-glucans for therapeutic drug design.


Assuntos
Macrófagos/química , Proteínas de Membrana/análise , Proteínas do Tecido Nervoso/análise , Receptores Imunológicos/análise , Animais , Glucanos/farmacologia , Lectinas Tipo C , Antígeno de Macrófago 1/fisiologia , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/fisiologia , Zimosan/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA