Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Chemosphere ; 354: 141654, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462188

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are environmental pollutants that have been associated with adverse health effects including liver damage, decreased vaccine responses, cancer, developmental toxicity, thyroid dysfunction, and elevated cholesterol. The specific molecular mechanisms impacted by PFAS exposure to cause these health effects remain poorly understood, however there is some evidence of lipid dysregulation. Thus, lipidomic studies that go beyond clinical triglyceride and cholesterol tests are greatly needed to investigate these perturbations. Here, we have utilized a platform coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations to simultaneously evaluate PFAS bioaccumulation and lipid metabolism disruptions. For the study, liver samples collected from C57BL/6 mice exposed to either of the emerging PFAS hexafluoropropylene oxide dimer acid (HFPO-DA or "GenX") or Nafion byproduct 2 (NBP2) were assessed. Sex-specific differences in PFAS accumulation and liver size were observed for both PFAS, in addition to disturbed hepatic liver lipidomic profiles. Interestingly, GenX resulted in less hepatic bioaccumulation than NBP2 yet gave a higher number of significantly altered lipids when compared to the control group, implying that the accumulation of substances in the liver may not be a reliable measure of the substance's capacity to disrupt the liver's natural metabolic processes. Specifically, phosphatidylglycerols, phosphatidylinositols, and various specific fatty acyls were greatly impacted, indicating alteration of inflammation, oxidative stress, and cellular signaling processes due to emerging PFAS exposure. Overall, these results provide valuable insight into the liver bioaccumulation and molecular mechanisms of GenX- and NBP2-induced hepatotoxicity.


Assuntos
Ácidos Alcanossulfônicos , Polímeros de Fluorcarboneto , Fluorocarbonos , Propionatos , Masculino , Feminino , Camundongos , Animais , Lipidômica , Camundongos Endogâmicos C57BL , Fluorocarbonos/análise , Fígado/metabolismo , Ácidos Alcanossulfônicos/metabolismo
2.
Anal Chem ; 95(34): 12913-12922, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37579019

RESUMO

Mass spectrometry imaging (MSI) has gained increasing popularity for tissue-based diagnostics due to its ability to identify and visualize molecular characteristics unique to different phenotypes within heterogeneous samples. Data from MSI experiments are often assessed and visualized using various supervised and unsupervised statistical approaches. However, these approaches tend to fall short in identifying and concisely visualizing subtle, phenotype-relevant molecular changes. To address these shortcomings, we developed aggregated molecular phenotype (AMP) scores. AMP scores are generated using an ensemble machine learning approach to first select features differentiating phenotypes, weight the features using logistic regression, and combine the weights and feature abundances. AMP scores are then scaled between 0 and 1, with lower values generally corresponding to class 1 phenotypes (typically control) and higher scores relating to class 2 phenotypes. AMP scores, therefore, allow the evaluation of multiple features simultaneously and showcase the degree to which these features correlate with various phenotypes. Due to the ensembled approach, AMP scores are able to overcome limitations associated with individual models, leading to high diagnostic accuracy and interpretability. Here, AMP score performance was evaluated using metabolomic data collected from desorption electrospray ionization MSI. Initial comparisons of cancerous human tissues to their normal or benign counterparts illustrated that AMP scores distinguished phenotypes with high accuracy, sensitivity, and specificity. Furthermore, when combined with spatial coordinates, AMP scores allow visualization of tissue sections in one map with distinguished phenotypic borders, highlighting their diagnostic utility.


Assuntos
Diagnóstico por Imagem , Neoplasias , Humanos , Diagnóstico por Imagem/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Neoplasias/diagnóstico por imagem , Metabolômica , Fenótipo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Imagem Molecular/métodos
3.
bioRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333214

RESUMO

Mass spectrometry imaging (MSI) has gained increasing popularity for tissue-based diagnostics due to its ability to identify and visualize molecular characteristics unique to different phenotypes within heterogeneous samples. Data from MSI experiments are often visualized using single ion images and further analyzed using machine learning and multivariate statistics to identify m/z features of interest and create predictive models for phenotypic classification. However, often only a single molecule or m/z feature is visualized per ion image, and mainly categorical classifications are provided from the predictive models. As an alternative approach, we developed an aggregated molecular phenotype (AMP) scoring system. AMP scores are generated using an ensemble machine learning approach to first select features differentiating phenotypes, weight the features using logistic regression, and combine the weights and feature abundances. AMP scores are then scaled between 0 and 1, with lower values generally corresponding to class 1 phenotypes (typically control) and higher scores relating to class 2 phenotypes. AMP scores therefore allow the evaluation of multiple features simultaneously and showcase the degree to which these features correlate with various phenotypes, leading to high diagnostic accuracy and interpretability of predictive models. Here, AMP score performance was evaluated using metabolomic data collected from desorption electrospray ionization (DESI) MSI. Initial comparisons of cancerous human tissues to normal or benign counterparts illustrated that AMP scores distinguished phenotypes with high accuracy, sensitivity, and specificity. Furthermore, when combined with spatial coordinates, AMP scores allow visualization of tissue sections in one map with distinguished phenotypic borders, highlighting their diagnostic utility.

4.
Cells ; 12(12)2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37371044

RESUMO

Monoclonal antibody (mAb) therapy directed against CD20 is an important tool in the treatment of B cell disorders. However, variable patient response and acquired resistance remain important clinical challenges. To identify genetic factors that may influence sensitivity to treatment, the cytotoxic activity of three CD20 mAbs: rituximab; ofatumumab; and obinutuzumab, were screened in high-throughput assays using 680 ethnically diverse lymphoblastoid cell lines (LCLs) followed by a pharmacogenomic assessment. GWAS analysis identified several novel gene candidates. The most significant SNP, rs58600101, in the gene MKL1 displayed ethnic stratification, with the variant being significantly more prevalent in the African cohort and resulting in reduced transcript levels as measured by qPCR. Functional validation of MKL1 by shRNA-mediated knockdown of MKL1 resulted in a more resistant phenotype. Gene expression analysis identified the developmentally associated TGFB1I1 as the most significant gene associated with sensitivity. qPCR among a panel of sensitive and resistant LCLs revealed immunoglobulin class-switching as well as differences in the expression of B cell activation markers. Flow cytometry showed heterogeneity within some cell lines relative to surface Ig isotype with a shift to more IgG+ cells among the resistant lines. Pretreatment with prednisolone could partly reverse the resistant phenotype. Results suggest that the efficacy of anti-CD20 mAb therapy may be influenced by B cell developmental status as well as polymorphism in the MKL1 gene. A clinical benefit may be achieved by pretreatment with corticosteroids such as prednisolone followed by mAb therapy.


Assuntos
Antineoplásicos , Testes Farmacogenômicos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/genética , Antígenos CD20/genética , Prednisolona , Humanos
5.
Pharmaceuticals (Basel) ; 16(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37242509

RESUMO

Temozolomide (TMZ) chemotherapy is an important tool in the treatment of glioma brain tumors. However, variable patient response and chemo-resistance remain exceptionally challenging. Our previous genome-wide association study (GWAS) identified a suggestively significant association of SNP rs4470517 in the RYK (receptor-like kinase) gene with TMZ drug response. Functional validation of RYK using lymphocytes and glioma cell lines resulted in gene expression analysis indicating differences in expression status between genotypes of the cell lines and TMZ dose response. We conducted univariate and multivariate Cox regression analyses using publicly available TCGA and GEO datasets to investigate the impact of RYK gene expression status on glioma patient overall (OS) and progression-free survival (PFS). Our results indicated that in IDH mutant gliomas, RYK expression and tumor grade were significant predictors of survival. In IDH wildtype glioblastomas (GBM), MGMT status was the only significant predictor. Despite this result, we revealed a potential benefit of RYK expression in IDH wildtype GBM patients. We found that a combination of RYK expression and MGMT status could serve as an additional biomarker for improved survival. Overall, our findings suggest that RYK expression may serve as an important prognostic or predictor of TMZ response and survival for glioma patients.

6.
Pharmaceuticals (Basel) ; 16(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37242540

RESUMO

Oxaliplatin (OXAL) is a commonly used chemotherapy for treating colorectal cancer (CRC). A recent genome wide association study (GWAS) showed that a genetic variant (rs11006706) in the lncRNA gene MKX-AS1 and partnered sense gene MKX could impact the response of genetically varied cell lines to OXAL treatment. This study found that the expression levels of MKX-AS1 and MKX in lymphocytes (LCLs) and CRC cell lines differed between the rs11006706 genotypes, indicating that this gene pair could play a role in OXAL response. Further analysis of patient survival data from the Cancer Genome Atlas (TCGA) and other sources showed that patients with high MKX-AS1 expression status had significantly worse overall survival (HR = 3.2; 95%CI = (1.17-9); p = 0.024) compared to cases with low MKX-AS1 expression status. Alternatively, high MKX expression status had significantly better overall survival (HR = 0.22; 95%CI = (0.07-0.7); p = 0.01) compared to cases with low MKX expression status. These results suggest an association between MKX-AS1 and MKX expression status that could be useful as a prognostic marker of response to OXAL and potential patient outcomes in CRC.

7.
Front Toxicol ; 4: 846221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573279

RESUMO

Understanding the mechanisms behind chemical susceptibility differences is key to protecting sensitive populations. However, elucidating gene-environment interactions (GxE) presents a daunting challenge. While mammalian models have proven useful, problems with scalability to an enormous chemical exposome and clinical translation faced by all models remain; therefore, alternatives are needed. Zebrafish (Danio rerio) have emerged as an excellent model for investigating GxE. This study used a combined bioinformatic and experimental approach to probe the mechanisms underlying chemical susceptibility differences in a genetically diverse zebrafish population. Starting from high-throughput screening (HTS) data, a genome-wide association study (GWAS) using embryonic fish exposed to 0.6 µM Abamectin revealed significantly different effects between individuals. A hypervariable region with two distinct alleles-one with G at the SNP locus (GG) and one with a T and the 16 bp deletion (TT)-associated with differential susceptibility was found. Sensitive fish had significantly lower sox7 expression. Due to their location and the observed expression differences, we hypothesized that these sequences differentially regulate sox7. A luciferase reporter gene assay was used to test if these sequences, alone, could lead to expression differences. The TT allele showed significantly lower expression than the GG allele in MCF-7 cells. To better understand the mechanism behind these expression differences, predicted transcription factor binding differences between individuals were compared in silico, and several putative binding differences were identified. EMSA was used to test for binding differences in whole embryo protein lysate to investigate these TF binding predictions. We confirmed that the GG sequence is bound to protein in zebrafish. Through a competition EMSA using an untagged oligo titration, we confirmed that the GG oligo had a higher binding affinity than the TT oligo, explaining the observed expression differences. This study identified differential susceptibility to chemical exposure in a genetically diverse population, then identified a plausible mechanism behind those differences from a genetic to molecular level. Thus, an HTS-compatible zebrafish model is valuable and adaptable in identifying GxE mechanisms behind susceptibility differences to chemical exposure.

8.
PLoS Genet ; 17(8): e1009732, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34437536

RESUMO

Cancer patients exhibit a broad range of inter-individual variability in response and toxicity to widely used anticancer drugs, and genetic variation is a major contributor to this variability. To identify new genes that influence the response of 44 FDA-approved anticancer drug treatments widely used to treat various types of cancer, we conducted high-throughput screening and genome-wide association mapping using 680 lymphoblastoid cell lines from the 1000 Genomes Project. The drug treatments considered in this study represent nine drug classes widely used in the treatment of cancer in addition to the paclitaxel + epirubicin combination therapy commonly used for breast cancer patients. Our genome-wide association study (GWAS) found several significant and suggestive associations. We prioritized consistent associations for functional follow-up using gene-expression analyses. The NAD(P)H quinone dehydrogenase 1 (NQO1) gene was found to be associated with the dose-response of arsenic trioxide, erlotinib, trametinib, and a combination treatment of paclitaxel + epirubicin. NQO1 has previously been shown as a biomarker of epirubicin response, but our results reveal novel associations with these additional treatments. Baseline gene expression of NQO1 was positively correlated with response for 43 of the 44 treatments surveyed. By interrogating the functional mechanisms of this association, the results demonstrate differences in both baseline and drug-exposed induction.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Farmacológicos/análise , NAD(P)H Desidrogenase (Quinona)/genética , Linhagem Celular Tumoral , Estudo de Associação Genômica Ampla/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , NAD(P)H Desidrogenase (Quinona)/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/metabolismo
9.
Pharmacogenomics ; 22(9): 543-551, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34044623

RESUMO

Combination drug therapies have become an integral part of precision oncology, and while evidence of clinical effectiveness continues to grow, the underlying mechanisms supporting synergy are poorly understood. Immortalized human lymphoblastoid cell lines (LCLs) have been proven as a particularly useful, scalable and low-cost model in pharmacogenetics research, and are suitable for elucidating the molecular mechanisms of synergistic combination therapies. In this review, we cover the advantages of LCLs in synergy pharmacogenomics and consider recent studies providing initial evidence of the utility of LCLs in synergy research. We also discuss several opportunities for LCL-based systems to address gaps in the research through the expansion of testing regimens, assessment of new drug classes and higher-order combinations, and utilization of integrated omics technologies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Testes Farmacogenômicos/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Humanos
10.
J Immunotoxicol ; 17(1): 94-104, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32407153

RESUMO

Currently, assessment of the potential immunotoxicity of a given agent involves a tiered approach for hazard identification and mechanistic studies, including observational studies, evaluation of immune function, and measurement of susceptibility to infectious and neoplastic diseases. These studies generally use costly low-throughput mammalian models. Zebrafish, however, offer an excellent alternative due to their rapid development, ease of maintenance, and homology to mammalian immune system function and development. Larval zebrafish also are a convenient model to study the innate immune system with no interference from the adaptive immune system. In this study, a respiratory burst assay (RBA) was utilized to measure reactive oxygen species (ROS) production after developmental xenobiotic exposure. Embryos were exposed to non-teratogenic doses of chemicals and at 96 h post-fertilization, the ability to produce ROS was measured. Using the RBA, 12 compounds with varying immune-suppressive properties were screened. Seven compounds neither suppressed nor enhanced the respiratory burst; five reproducibly suppressed global ROS production, but with varying potencies: benzo[a]pyrene, 17ß-estradiol, lead acetate, methoxychlor, and phenanthrene. These five compounds have all previously been reported as immunosuppressive in mammalian innate immunity assays. To evaluate whether the suppression of ROS by these compounds was a result of decreased immune cell numbers, flow cytometry with transgenic zebrafish larvae was used to count the numbers of neutrophils and macrophages after chemical exposure. With this assay, benzo[a]pyrene was found to be the only chemical that induced a change in the number of immune cells by increasing macrophage but not neutrophil numbers. Taken together, this work demonstrates the utility of zebrafish larvae as a vertebrate model for identifying compounds that impact innate immune function at non-teratogenic levels and validates measuring ROS production and phagocyte numbers as metrics for monitoring how xenobiotic exposure alters the innate immune system.


Assuntos
Benzo(a)pireno/efeitos adversos , Testes Imunológicos de Citotoxicidade/métodos , Imunidade Inata/efeitos dos fármacos , Espécies Reativas de Oxigênio/análise , Explosão Respiratória/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Contagem de Células Sanguíneas , Embrião não Mamífero , Estradiol/efeitos adversos , Estudos de Viabilidade , Ensaios de Triagem em Larga Escala/métodos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Metoxicloro/efeitos adversos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Compostos Organometálicos/efeitos adversos , Fenantrenos/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/imunologia , Peixe-Zebra
11.
Front Genet ; 10: 829, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681399

RESUMO

Lymphoblastoid cell lines (LCLs) are a highly successful model for evaluating the genetic etiology of cancer drug response, but applications using this model have typically focused on single drugs. Combination therapy is quite common in modern chemotherapy treatment since drugs often work synergistically, and it is an important progression in the use of the LCL model to expand work for drug combinations. In the present work, we demonstrate that synergy occurs and can be quantified in LCLs across a range of clinically important drug combinations. Lymphoblastoid cell lines have been commonly employed in association mapping in cancer pharmacogenomics, but it is so far untested as to whether synergistic effects have a genetic etiology. Here we use cell lines from extended pedigrees to demonstrate that there is a substantial heritable component to synergistic drug response. Additionally, we perform linkage mapping in these pedigrees to identify putative regions linked to this important phenotype. This demonstration supports the premise of expanding the use of the LCL model to perform association mapping for combination therapies.

12.
PLoS One ; 14(3): e0214094, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30897121

RESUMO

Prevalence of end-stage renal disease (ESRD) in the US increased by 74% from 2000 to 2013. To investigate the role of the broader environment on ESRD survival time, we evaluated average distance to the nearest hospital by county (as a surrogate for access to healthcare) and the Environmental Quality Index (EQI), an aggregate measure of ambient environmental quality composed of five domains (air, water, land, built, and sociodemographic), at the county level across the US. Associations between average hospital distance, EQI, and survival time for 1,092,281 people diagnosed with ESRD between 2000 and 2013 (age 18+, without changes in county residence) from the US Renal Data System were evaluated using proportional-hazards models adjusting for gender, race, age at first ESRD service date, BMI, alcohol and tobacco use, and rurality. The models compared the average distance to the nearest hospital (<10, 10-20, >20 miles) and overall EQI percentiles [0-5), [5-20), [20-40), [40-60), [60-80), [80-95), and [95-100], where lower percentiles are interpreted as better EQI. In the full, non-stratified model with both distance and EQI, there was increased survival for patients over 20 miles from a hospital compared to those under 10 miles from a hospital (hazard ratio = 1.14, 95% confidence interval = 1.12-1.15) and no consistent direction of association across EQI strata. In the full model stratified by average hospital distance, under 10 miles from a hospital had increased survival in the worst EQI strata (median survival 3.0 vs. 3.5 years for best vs. worst EQI, respectively), however for people over 20 miles from a hospital, median survival was higher in the best (4.2 years) vs worst (3.4 years) EQI. This association held across different rural/urban categories and age groups. These results demonstrate the importance of considering multiple factors when studying ESRD survival and future efforts should consider additional components of the broader environment.


Assuntos
Falência Renal Crônica/epidemiologia , Adolescente , Adulto , Idoso , Poluição do Ar/efeitos adversos , Feminino , Acessibilidade aos Serviços de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Modelos de Riscos Proporcionais , Fatores de Risco , Fatores Socioeconômicos , Estados Unidos/epidemiologia , Qualidade da Água , Adulto Jovem
13.
ALTEX ; 35(1): 51-64, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28738424

RESUMO

Evidence regarding carcinogenic mechanisms serves a critical role in International Agency for Research on Cancer (IARC) Monograph evaluations. Three recent IARC Working Groups pioneered inclusion of the US Environmental Protection Agency (EPA) ToxCast program high-throughput screening (HTS) data to supplement other mechanistic evidence. In Monograph V110, HTS profiles were compared between perfluorooctanoic acid (PFOA) and prototypical activators across multiple nuclear receptors. For Monograph V112-113, HTS assays were mapped to 10 key characteristics of carcinogens identified by an IARC expert group, and systematically considered as an additional mechanistic data stream. Both individual assay results and ToxPi-based rankings informed mechanistic evaluations. Activation of multiple nuclear receptors in HTS assays showed that PFOA targets not only peroxisome proliferator activated receptors, but also other receptors. ToxCast assays substantially covered 5 of 10 key characteristics, corroborating literature evidence of "induces oxidative stress" and "alters cell proliferation, cell death or nutrient supply" and filling gaps for "modulates receptor-mediated effects." Thus, ToxCast HTS data were useful both in evaluating specific mechanistic hypotheses and in contributing to the overall evaluation of mechanistic evidence. However, additional HTS assays are needed to provide more comprehensive coverage of the 10 key characteristics of carcinogens that form the basis of current IARC mechanistic evaluations.


Assuntos
Testes de Carcinogenicidade , Carcinógenos/toxicidade , Ensaios de Triagem em Larga Escala/métodos , Agências Internacionais , Animais , Bioensaio , Humanos , Publicações , Estados Unidos , United States Environmental Protection Agency
14.
Front Pharmacol ; 8: 158, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28473769

RESUMO

The idea of synergistic interactions between drugs and chemicals has been an important issue in the biomedical world for over a century. As complex diseases, especially cancer, are being treated with various drug cocktails, understanding the interactions among these drugs is increasingly vital to ensuring successful treatment regimens. However, the idea of synergy is not limited to only the biomedical realm and these ideas have developed across many different disciplines, as well. In this review, we first discuss the various terminology surrounding the idea of synergy, providing a comprehensive list of terms defined across numerous disciplines. We then review the most common methodology for detection and quantification of synergy, including the two most prominent reference models for describing additive interactions: Loewe Additivity and Bliss Independence. We also discuss advantages and limitations to each method, with a focus on the Chou-Talalay Combination Index method. Finally, we describe how methods development and terminology have developed among disciplines outside of biomedicine and pharmacology, to synthesize the literature for readers.

15.
PLoS One ; 11(12): e0168278, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27942020

RESUMO

The evolution, molecular behavior, and physiological function of nuclear receptors are of particular interest given their diverse roles in regulating essential biological processes. The vitamin D receptor (VDR) is well known for its canonical roles in calcium homeostasis and skeletal maintenance. Additionally, VDR has received an increased amount of attention due to the discovery of numerous non-calcemic functions, including the detoxification of lithocholic acid. Lithocholic acid is a toxic metabolite of chenodeoxycholic acid, a primary bile acid. The partnership between the VDR and lithocholic acid has been hypothesized to be a recent adaptation that evolved to mediate the detoxification and elimination of lithocholic acid from the gut. This partnership is speculated to be limited to higher vertebrates (birds and mammals), as lower vertebrates do not synthesize the parent compound of lithocholic acid. However, the molecular functions associated with the observed insensitivity of basal VDRs to lithocholic acid have not been explored. Here we characterize canonical nuclear receptor functions of VDRs from select species representing key nodes in vertebrate evolution and span a range of bile salt phenotypes. Competitive ligand binding assays revealed that the receptor's affinity for lithocholic acid is highly conserved across species, suggesting that lithocholic acid affinity is an ancient and non-adaptive trait. However, transient transactivation assays revealed that lithocholic acid-mediated VDR activation might have evolved more recently, as the non-mammalian receptors did not respond to lithocholic acid unless exogenous coactivator proteins were co-expressed. Subsequent functional assays indicated that differential lithocholic acid-mediated receptor activation is potentially driven by differential protein-protein interactions between VDR and nuclear receptor coregulator proteins. We hypothesize that the vitamin D receptor-lithocholic acid partnership evolved as a by-product of natural selection on the ligand-receptor partnership between the vitamin D receptor and the native VDR ligand: 1α,25-dihydroxyvitamin D3, the biologically active metabolite of vitamin D3.


Assuntos
Evolução Biológica , Ácido Litocólico/metabolismo , Receptores de Calcitriol/metabolismo , Animais , Células Hep G2 , Humanos , Vertebrados
16.
PLoS One ; 10(4): e0122853, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25855982

RESUMO

The vertebrate genome is a result of two rapid and successive rounds of whole genome duplication, referred to as 1R and 2R. Furthermore, teleost fish have undergone a third whole genome duplication (3R) specific to their lineage, resulting in the retention of multiple gene paralogs. The more recent 3R event in teleosts provides a unique opportunity to gain insight into how genes evolve through specific evolutionary processes. In this study we compare molecular activities of vitamin D receptors (VDR) from basal species that diverged at key points in vertebrate evolution in order to infer derived and ancestral VDR functions of teleost paralogs. Species include the sea lamprey (Petromyzon marinus), a 1R jawless fish; the little skate (Leucoraja erinacea), a cartilaginous fish that diverged after the 2R event; and the Senegal bichir (Polypterus senegalus), a primitive 2R ray-finned fish. Saturation binding assays and gel mobility shift assays demonstrate high affinity ligand binding and classic DNA binding characteristics of VDR has been conserved across vertebrate evolution. Concentration response curves in transient transfection assays reveal EC50 values in the low nanomolar range, however maximum transactivational efficacy varies significantly between receptor orthologs. Protein-protein interactions were investigated using co-transfection, mammalian 2-hybrid assays, and mutations of coregulator activation domains. We then combined these results with our previous study of VDR paralogs from 3R teleosts into a bioinformatics analysis. Our results suggest that 1, 25D3 acts as a partial agonist in basal species. Furthermore, our bioinformatics analysis suggests that functional differences between VDR orthologs and paralogs are influenced by differential protein interactions with essential coregulator proteins. We speculate that we may be observing a change in the pharmacodynamics relationship between VDR and 1, 25D3 throughout vertebrate evolution that may have been driven by changes in protein-protein interactions between VDR and essential coregulators.


Assuntos
Evolução Molecular , Peixes/genética , Petromyzon/genética , Filogenia , Receptores de Calcitriol/genética , Rajidae/genética , Animais , Sequência de Bases , Clonagem Molecular , Biologia Computacional , Ensaio de Desvio de Mobilidade Eletroforética , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Ligação Proteica , Mapeamento de Interação de Proteínas , Análise de Sequência de DNA , Especificidade da Espécie , Técnicas do Sistema de Duplo-Híbrido
17.
Sci Rep ; 4: 5664, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25012808

RESUMO

The U.S. Tox21 program has screened a library of approximately 10,000 (10K) environmental chemicals and drugs in three independent runs for estrogen receptor alpha (ERα) agonist and antagonist activity using two types of ER reporter gene cell lines, one with an endogenous full length ERα (ER-luc; BG1 cell line) and the other with a transfected partial receptor consisting of the ligand binding domain (ER-bla; ERα ß-lactamase cell line), in a quantitative high-throughput screening (qHTS) format. The ability of the two assays to correctly identify ERα agonists and antagonists was evaluated using a set of 39 reference compounds with known ERα activity. Although both assays demonstrated adequate (i.e. >80%) predictivity, the ER-luc assay was more sensitive and the ER-bla assay more specific. The qHTS assay results were compared with results from previously published ERα binding assay data and showed >80% consistency. Actives identified from both the ER-bla and ER-luc assays were analyzed for structure-activity relationships (SARs) revealing known and potentially novel ERα active structure classes. The results demonstrate the feasibility of qHTS to identify environmental chemicals with the potential to interact with the ERα signaling pathway and the two different assay formats improve the confidence in correctly identifying these chemicals.


Assuntos
Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Linhagem Celular , Genes Reporter/efeitos dos fármacos , Células HEK293 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Ligantes , Ligação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade
18.
Environ Sci Technol ; 48(15): 8706-16, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24960280

RESUMO

Thousands of environmental chemicals are subject to regulatory review for their potential to be endocrine disruptors (ED). In vitro high-throughput screening (HTS) assays have emerged as a potential tool for prioritizing chemicals for ED-related whole-animal tests. In this study, 1814 chemicals including pesticide active and inert ingredients, industrial chemicals, food additives, and pharmaceuticals were evaluated in a panel of 13 in vitro HTS assays. The panel of in vitro assays interrogated multiple end points related to estrogen receptor (ER) signaling, namely binding, agonist, antagonist, and cell growth responses. The results from the in vitro assays were used to create an ER Interaction Score. For 36 reference chemicals, an ER Interaction Score >0 showed 100% sensitivity and 87.5% specificity for classifying potential ER activity. The magnitude of the ER Interaction Score was significantly related to the potency classification of the reference chemicals (p < 0.0001). ERα/ERß selectivity was also evaluated, but relatively few chemicals showed significant selectivity for a specific isoform. When applied to a broader set of chemicals with in vivo uterotrophic data, the ER Interaction Scores showed 91% sensitivity and 65% specificity. Overall, this study provides a novel method for combining in vitro concentration response data from multiple assays and, when applied to a large set of ER data, accurately predicted estrogenic responses and demonstrated its utility for chemical prioritization.


Assuntos
Disruptores Endócrinos/análise , Receptor alfa de Estrogênio/agonistas , Receptor beta de Estrogênio/agonistas , Ensaios de Triagem em Larga Escala , Modelos Químicos , Algoritmos , Animais , Bioensaio , Antagonistas de Estrogênios/análise , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/antagonistas & inibidores , Estrogênios/análise , Humanos , Células MCF-7 , Praguicidas , Transdução de Sinais
19.
Nat Biotechnol ; 32(6): 583-91, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24837663

RESUMO

Addressing the safety aspects of drugs and environmental chemicals has historically been undertaken through animal testing. However, the quantity of chemicals in need of assessment and the challenges of species extrapolation require the development of alternative approaches. Our approach, the US Environmental Protection Agency's ToxCast program, utilizes a large suite of in vitro and model organism assays to interrogate important chemical libraries and computationally analyze bioactivity profiles. Here we evaluated one component of the ToxCast program, the use of primary human cell systems, by screening for chemicals that disrupt physiologically important pathways. Chemical-response signatures for 87 endpoints covering molecular functions relevant to toxic and therapeutic pathways were generated in eight cell systems for 641 environmental chemicals and 135 reference pharmaceuticals and failed drugs. Computational clustering of the profiling data provided insights into the polypharmacology and potential off-target effects for many chemicals that have limited or no toxicity information. The endpoints measured can be closely linked to in vivo outcomes, such as the upregulation of tissue factor in endothelial cell systems by compounds linked to the risk of thrombosis in vivo. Our results demonstrate that assaying complex biological pathways in primary human cells can identify potential chemical targets, toxicological liabilities and mechanisms useful for elucidating adverse outcome pathways.


Assuntos
Alternativas aos Testes com Animais/métodos , Ensaios de Triagem em Larga Escala/métodos , Modelos Biológicos , Bibliotecas de Moléculas Pequenas , Testes de Toxicidade/métodos , Animais , Simulação por Computador , Humanos , Camundongos , Fenótipo , Ratos , Estados Unidos , United States Environmental Protection Agency
20.
Biometrics ; 70(1): 237-46, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24397816

RESUMO

High-throughput screening (HTS) of environmental chemicals is used to identify chemicals with high potential for adverse human health and environmental effects from among the thousands of untested chemicals. Predicting physiologically relevant activity with HTS data requires estimating the response of a large number of chemicals across a battery of screening assays based on sparse dose-response data for each chemical-assay combination. Many standard dose-response methods are inadequate because they treat each curve separately and under-perform when there are as few as 6-10 observations per curve. We propose a semiparametric Bayesian model that borrows strength across chemicals and assays. Our method directly parametrizes the efficacy and potency of the chemicals as well as the probability of response. We use the ToxCast data from the U.S. Environmental Protection Agency (EPA) as motivation. We demonstrate that our hierarchical method provides more accurate estimates of the probability of response, efficacy, and potency than separate curve estimation in a simulation study. We use our semiparametric method to compare the efficacy of chemicals in the ToxCast data to well-characterized reference chemicals on estrogen receptor α (ERα) and peroxisome proliferator-activated receptor γ (PPARγ) assays, then estimate the probability that other chemicals are active at lower concentrations than the reference chemicals.


Assuntos
Algoritmos , Teorema de Bayes , Relação Dose-Resposta a Droga , Poluentes Ambientais/toxicidade , Modelos Estatísticos , Testes de Toxicidade/métodos , Simulação por Computador , Receptor alfa de Estrogênio/metabolismo , Humanos , Cadeias de Markov , Método de Monte Carlo , PPAR gama/metabolismo , Estados Unidos , United States Environmental Protection Agency
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA