Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 21(1): 270, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592318

RESUMO

BACKGROUND: Implant infections caused by biofilm forming bacteria are a major threat in orthopedic surgery. Delivering antibiotics directly to an implant affected by a bacterial biofilm via superparamagnetic nanoporous silica nanoparticles could present a promising approach. Nevertheless, short blood circulation half-life because of rapid interactions of nanoparticles with the host's immune system hinder them from being clinically used. The aim of this study was to determine the temporal in vivo resolution of magnetic nanoporous silica nanoparticle (MNPSNP) distribution and the effect of PEGylation and clodronate application using PET/CT imaging and gamma counting in an implant mouse model. METHODS: PEGylated and non-PEGylated MNPSNPs were radiolabeled with gallium-68 (68Ga), implementing the chelator tris(hydroxypyridinone). 36 mice were included in the study, 24 mice received a magnetic implant subcutaneously on the left and a titanium implant on the right hind leg. MNPSNP pharmacokinetics and implant accumulation was analyzed in dependence on PEGylation and additional clodronate application. Subsequently gamma counting was performed for further final analysis. RESULTS: The pharmacokinetics and biodistribution of all radiolabeled nanoparticles could clearly be visualized and followed by dynamic PET/CT imaging. Both variants of 68Ga-labeled MNPSNP accumulated mainly in liver and spleen. PEGylation of the nanoparticles already resulted in lower liver uptakes. Combination with macrophage depletion led to a highly significant effect whereas macrophage depletion alone could not reveal significant differences. Although MNPSNP accumulation around implants was low in comparison to the inner organs in PET/CT imaging, gamma counting displayed a significantly higher %I.D./g for the tissue surrounding the magnetic implants compared to the titanium control. Additional PEGylation and/or macrophage depletion revealed no significant differences regarding nanoparticle accumulation at the implantation site. CONCLUSION: Tracking of 68Ga-labeled nanoparticles in a mouse model in the first critical hours post-injection by PET/CT imaging provided a better understanding of MNPSNP distribution, elimination and accumulation. Although PEGylation increases circulation time, nanoparticle accumulation at the implantation site was still insufficient for infection treatment and additional efforts are needed to increase local accumulation.


Assuntos
Nanoporos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Camundongos , Ácido Clodrônico , Radioisótopos de Gálio , Distribuição Tecidual , Titânio , Modelos Animais de Doenças , Fenômenos Magnéticos
2.
PLoS One ; 18(7): e0286918, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37418422

RESUMO

In orthopaedic research, the analysis of the gait pattern is an often-used evaluation method. It allows an assessment of changes in motion sequence and pain level during postoperative follow up periods. Visual assessments are highly subjective and dependent on the circumstances. Particular challenge in rabbits is their hopping gait pattern. The aim of the present study was to establish a more objective and sensitive lameness evaluation using a pressure sensing mat. Twelve NZW rabbits were implemented in the study. They got an artificial anterior cruciate ligament transection of the right knee in connection with an experimental study, which investigated PTOA treatment. Rabbits were examined by a visual lameness score. Additionally, load of the hindlimbs was measured by the use of a pressure sensing mat and a video was recorded. Peak pressure and time force integral, defined as cumulated integral of all sensors associated to a hind paw, were evaluated. Preoperative data were collected on three independent days. As postoperative measurement time points, week 1 and week 12 after surgery were chosen. The subjective visual scoring was compared to the objective data of the pressure sensing mat. Following the visual score, lameness in week one was mild to moderate. In week twelve, rabbits were evaluated as lame free bar one. Contrary, following the values of the sensor mat, lameness in week one appeared to be more pronounced and almost all rabbits still showed low-grade lameness in week twelve. Consequently, the pressure sensing mat is more sensitive than the visual score and captures the grade of lameness much more accurately. For specific orthopaedic issues, where subtle differences in lameness are important to detect, the used system is a good supplementary evaluation method.


Assuntos
Lagomorpha , Coxeadura Animal , Coelhos , Animais , Coxeadura Animal/diagnóstico , Fenômenos Biomecânicos , Marcha , Ligamento Cruzado Anterior
3.
Int J Mol Sci ; 24(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36768890

RESUMO

A major drawback of nanoparticles (NPs) for biomedical applications is their preferential phagocytosis in immune cells, which can be avoided by surface modifications like PEGylation. Nevertheless, examinations of different polyethylene glycol (PEG) chain lengths on the competence of immune cells as well as possible immunotoxic effects are still sparse. Therefore, primary murine macrophages and dendritic cells were generated and incubated with magnetic nanoporous silica nanoparticles (MNPSNPs) modified with different mPEG chains (2 kDa, 5 kDa, and 10 kDa). Cytotoxicity, cytokine release, and the formation of reactive oxygen species (ROS) were determined. Immune competence of both cell types was examined and uptake of MNPSNPs into macrophages was visualized. Concentrations up to 150 µg/mL MNPSNPs showed no effects on the metabolic activity or immune competence of both cell types. However, ROS significantly increased in macrophages incubated with larger PEG chains, while the concentration of cytokines (TNF-α and IL-6) did not indicate a proinflammatory process. Investigations on the uptake of MNPSNPs revealed no differences in the onset of internalization and the intensity of intracellular fluorescence. The study gives no indication for an immunotoxic effect of PEGylated MNPSNPs. Nevertheless, there is still a need for optimization regarding their internalization to ensure an efficient drug delivery.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Animais , Camundongos , Nanopartículas de Magnetita/toxicidade , Espécies Reativas de Oxigênio/farmacologia , Polietilenoglicóis/farmacologia , Macrófagos , Citocinas/farmacologia , Células Dendríticas
4.
Eur Surg Res ; 64(1): 27-36, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35843208

RESUMO

INTRODUCTION: Sheep are frequently used in translational surgical orthopedic studies. Naturally, a good pain management is mandatory for animal welfare, although it is also important with regard to data quality. However, methods for adequate severity assessment, especially considering pain, are rather rare regarding large animal models. Therefore, in the present study, accompanying a surgical pilot study, telemetry and the Sheep Grimace Scale (SGS) were used in addition to clinical scoring for severity assessment after surgical interventions in sheep. METHODS: Telemetric devices were implanted in a first surgery subcutaneously into four German black-headed mutton ewes (4-5 years, 77-115 kg). After 3-4 weeks of recovery, sheep underwent tendon ablation of the left M. infraspinatus. Clinical scoring and video recordings for SGS analysis were performed after both surgeries, and the heart rate (HR) and general activity were monitored by telemetry. RESULTS: Immediately after surgery, clinical score and HR were slightly increased, and activity was decreased in individual sheep after both surgeries. The SGS mildly elevated directly after transmitter implantation but increased to higher levels after tendon ablation immediately after surgery and on the following day. CONCLUSION: In summary, SGS- and telemetry-derived data were suitable to detect postoperative pain in sheep with the potential to improve individual pain recognition and postoperative management, which consequently contributes to refinement.


Assuntos
Procedimentos Ortopédicos , Dor , Telemetria , Animais , Feminino , Modelos Animais , Projetos Piloto , Próteses e Implantes , Ovinos , Procedimentos Ortopédicos/veterinária
5.
Acta Vet Scand ; 64(1): 37, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36514178

RESUMO

With ongoing animal welfare efforts, multimodal analgesia is often recommended to implement in study protocols. Buprenorphine with very potent analgesic effect is a standard opioid for the use in this context in rats. In this study, two rat strains (LEW/NHanZtm, n = 6 and Crl:CD(SD), n = 8) underwent orthopaedic surgery and received carprofen, buprenorphine and a local anaesthetic in a multimodal setup. Crl:CD(SD) rats showed severe side effects in the first 24 h after anaesthesia, predominantly manifesting in pica-behaviour and reaching humane endpoints in two of eight animals, while LEW/NHanZtm rats showed only slight depression in the first postoperative days. In the context of improving animal welfare in experimental studies, buprenorphine is highly recommended not to be used in male Crl:CD(SD) rats and should generally be used very carefully and only if required.


Assuntos
Analgesia , Buprenorfina , Doenças dos Roedores , Ratos , Masculino , Animais , Buprenorfina/efeitos adversos , Analgésicos Opioides/efeitos adversos , Analgésicos/uso terapêutico , Analgesia/métodos , Analgesia/veterinária , Medição da Dor , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/veterinária
6.
Nanomedicine ; 30: 102289, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32861030

RESUMO

Implant associated infections are still key problem in surgery. In the present study, the combination of a magnetic implant with administered magnetic nanoporous silica nanoparticles as potential drug carriers was examined in mice in dependence of local infection and macrophages as influencing factors. Four groups of mice (with and without implant infection and with and without macrophage depletion) received a magnet on the left and a titanium control on the right hind leg. Then, fluorescent nanoparticles were administered and particle accumulations at implant surfaces and in inner organs as well as local tissue reactions were analyzed. Magnetic nanoparticles could be found at the surfaces of magnetic implants in different amounts depending on the treatment groups and only rarely at titanium surfaces. Different interactions of magnetic implants, particles, infection and surrounding tissues occurred. The general principle of targeted accumulation of magnetic nanoparticles could be proven.


Assuntos
Grafite/administração & dosagem , Terapia de Alvo Molecular , Nanopartículas/administração & dosagem , Próteses e Implantes , Análise Espectral Raman/métodos , Animais , Anidrase Carbônica IX/metabolismo , Cães , Endocitose , Citometria de Fluxo , Células Madin Darby de Rim Canino , Microscopia Confocal/métodos
7.
PLoS One ; 15(1): e0227563, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31929570

RESUMO

Rotator cuff tear is the most frequent tendon injury in the adult population. Despite current improvements in surgical techniques and the development of grafts, failure rates following tendon reconstruction remain high. New therapies, which aim to restore the topology and functionality of the interface between muscle, tendon and bone, are essentially required. One of the key factors for a successful incorporation of tissue engineered constructs is a rapid ingrowth of cells and tissues, which is dependent on a fast vascularization. The dorsal skinfold chamber model in female BALB/cJZtm mice allows the observation of microhemodynamic parameters in repeated measurements in vivo and therefore the description of the vascularization of different implant materials. In order to promote vascularization of implant material, we compared a porous polymer patch (a commercially available porous polyurethane based scaffold from Biomerix™) with electrospun polycaprolactone (PCL) fiber mats and chitosan-graft-PCL coated electrospun PCL (CS-g-PCL) fiber mats in vivo. Using intravital fluorescence microscopy microcirculatory parameters were analyzed repetitively over 14 days. Vascularization was significantly increased in CS-g-PCL fiber mats at day 14 compared to the porous polymer patch and uncoated PCL fiber mats. Furthermore CS-g-PCL fiber mats showed also a reduced activation of immune cells. Clinically, these are important findings as they indicate that the CS-g-PCL improves the formation of vascularized tissue and the ingrowth of cells into electrospun PCL scaffolds. Especially the combination of enhanced vascularization and the reduction in immune cell activation at the later time points of our study points to an improved clinical outcome after rotator cuff tear repair.


Assuntos
Materiais Biocompatíveis/química , Microcirculação , Poliésteres/química , Lesões do Manguito Rotador/terapia , Animais , Materiais Biocompatíveis/uso terapêutico , Capilares/fisiologia , Quitosana/química , Feminino , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Nanofibras/química , Porosidade , Próteses e Implantes , Manguito Rotador/irrigação sanguínea , Lesões do Manguito Rotador/patologia
8.
J Tissue Eng Regen Med ; 14(1): 186-197, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31670896

RESUMO

Acute and chronic rotator cuff tears remain challenging for therapy. A wide range of therapeutic approaches were developed but re-tears and postoperative complications occur regularly. Especially in elderly people, the natural regeneration processes are decelerated, and graft materials are often necessary to stabilize the tendon-to-bone attachment and to improve the healing process. We here investigated in a small animal model a newly developed electrospun polycaprolactone fiber implant coated with a chitosan-polycaprolactone graft copolymer and compared these implants biomechanically and histologically with either a commercially available porous polyurethane implant (Biomerix 3D Scaffold) or suture-fixed tendons. Fifty-one rats were divided into three groups of 17 animals each. In the first surgery, the left infraspinatus tendons of all rats were detached, and the animals recovered for 4 weeks. In the second surgery, the tendons were fixed with suture material only (suture-fixed group; n = 17), whereas in the two experimental groups, the tendons were fixed with suture material and the polyurethane implant (Biomerix scaffold group; n = 17) or the modified electrospun polycaprolactone fiber implant (CS-g-PCL scaffold group; n=17), respectively. The unaffected right infraspinatus tendons were used as native controls. After a recovery of 8 weeks, all animals were clinically inconspicuous. In 12 animals of each group, repaired entheses were biomechanically tested for force at failure, stiffness, and modulus of elasticity, and in five animals, repaired entheses were analyzed histologically. Biomechanically, all parameters did not differ statistically significant between both implant groups, and the entheses failed typically at the surgical site. However, with respect to the force at failure, the median values of the two implant groups were smaller than the median value of the suture-fixed group. Histologically, the modified polycaprolactone fiber implant showed no acute inflammation processes, a good infiltration with cells, ingrowth of blood vessels and tendinous tissue, and a normal fibrous ensheathment. Further improvement of the implant material could be achieved by additional implementation of drug delivery systems. Therewith, the used CS-g-PCL fiber mat is a promising basic material to reach the goal of a clinically usable graft for rotator cuff tear repair.


Assuntos
Quitosana/química , Eletroquímica/métodos , Poliésteres/química , Lesões do Manguito Rotador/cirurgia , Manguito Rotador/cirurgia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Idoso , Animais , Fenômenos Biomecânicos , Humanos , Masculino , Teste de Materiais , Procedimentos Ortopédicos/métodos , Polímeros/química , Poliuretanos/química , Porosidade , Ratos , Ratos Endogâmicos Lew , Lesões do Manguito Rotador/patologia , Ruptura/patologia , Estresse Mecânico , Suturas , Tendões/patologia , Cicatrização
9.
J Nanobiotechnology ; 16(1): 96, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482189

RESUMO

BACKGROUND: In orthopedic surgery, implant-associated infections are still a major problem. For the improvement of the selective therapy in the infection area, magnetic nanoparticles as drug carriers are promising when used in combination with magnetizable implants and an externally applied magnetic field. These implants principally increase the strength of the magnetic field resulting in an enhanced accumulation of the drug loaded particles in the target area and therewith a reduction of the needed amount and the risk of undesirable side effects. In the present study magnetic nanoporous silica core-shell nanoparticles, modified with fluorophores (fluorescein isothiocyanate/FITC or rhodamine B isothiocyanate/RITC) and poly(ethylene glycol) (PEG), were used in combination with metallic plates of different magnetic properties and with a magnetic field. In vitro and in vivo experiments were performed to investigate particle accumulation and retention and their biocompatibility. RESULTS: Spherical magnetic silica core-shell nanoparticles with reproducible superparamagnetic behavior and high porosity were synthesized. Based on in vitro proliferation and viability tests the modification with organic fluorophores and PEG led to highly biocompatible fluorescent particles, and good dispersibility. In a circular tube system martensitic steel 1.4112 showed superior accumulation and retention of the magnetic particles in comparison to ferritic steel 1.4521 and a Ti90Al6V4 control. In vivo tests in a mouse model where the nanoparticles were injected subcutaneously showed the good biocompatibility of the magnetic silica nanoparticles and their accumulation on the surface of a metallic plate, which had been implanted before, and in the surrounding tissue. CONCLUSION: With their superparamagnetic properties and their high porosity, multifunctional magnetic nanoporous silica nanoparticles are ideal candidates as drug carriers. In combination with their good biocompatibility in vitro, they have ideal properties for an implant directed magnetic drug targeting. Missing adverse clinical and histological effects proved the good biocompatibility in vivo. Accumulation and retention of the nanoparticles could be influenced by the magnetic properties of the implanted plates; a remanent martensitic steel plate significantly improved both values in vitro. Therefore, the use of magnetizable implant materials in combination with the magnetic nanoparticles has promising potential for the selective treatment of implant-associated infections.


Assuntos
Nanopartículas de Magnetita/química , Próteses e Implantes , Dióxido de Silício/química , Animais , Materiais Biocompatíveis/química , Portadores de Fármacos/química , Feminino , Células Hep G2 , Humanos , Campos Magnéticos , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Nanoporos
10.
J Orthop Sci ; 23(2): 321-327, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29174422

RESUMO

BACKGROUND: For the treatment of hallux valgus commonly distal metatarsal osteotomies are performed. Persistent problems due to the hardware and the necessity of hardware removal has led to the development of absorbable implants. To overcome the limitations of formerly used materials for biodegradable implants, recently magnesium has been introduced as a novel implant material. This is the first study showing mid-term clinical and radiological (MRI) data after using magnesium implants for fixation of distal metatarsal osteotomies. MATERIAL AND METHODS: 26 patients with symptomatic hallux valgus were included in the study. They were randomly selected to be treated with a magnesium or standard titanium screw for fixation of a modified distal metatarsal osteotomy. The patients had a standardized clinical follow up and MRI investigation 3 years' post-surgery. The clinical tests included the range of motion of the MTP 1, the AOFAS, FAAM and SF-36 scores. Further on the pain was evaluated on a VAS. RESULTS: Eight patients of the magnesium group and 6 of the titanium group had a full clinical and MRI follow up 3 years postoperatively. One patient was lost to follow-up. All other patients could be interviewed, but denied full study participation. There was a significant improvement for all tested clinical scores (AOFAS, SF-36, FAAM, Pain-NRS) from pre-to postoperative investigation, but no statistically relevant difference between the groups. Magnesium implants showed significantly less artifacts in the MRI, no implant related cysts were found and the implant was under degradation three years postoperatively. CONCLUSION: In this study, bioabsorbable magnesium implants showed comparable clinical results to titanium standard implants 3 years after distal modified metatarsal osteotomy and were more suitable for radiologic analysis. LEVEL OF EVIDENCE: 2.


Assuntos
Implantes Absorvíveis , Parafusos Ósseos , Hallux Valgus/cirurgia , Magnésio/química , Osteotomia/instrumentação , Titânio/química , Adulto , Idoso , Feminino , Seguimentos , Hallux Valgus/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Ossos do Metatarso/cirurgia , Pessoa de Meia-Idade , Variações Dependentes do Observador , Osteotomia/métodos , Amplitude de Movimento Articular/fisiologia , Medição de Risco , Estatísticas não Paramétricas , Fatores de Tempo , Resultado do Tratamento
11.
Clin Orthop Relat Res ; 475(11): 2783-2794, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28795328

RESUMO

BACKGROUND: Multiple trauma is frequently associated with hemorrhagic shock and fractures of the extremities. Clinically, the rate of impaired fracture healing (delayed healing and nonunion) seems to be increased in patients with multiple injuries compared with patients with isolated fractures. As the underlying pathogenesis remains poorly understood, we aimed to analyze the biomechanical properties during fracture healing in a murine model. QUESTIONS: The aim of this study was to determine whether fracture healing after severe hemorrhagic shock results in (1) delayed bridging as determined by macroscopic and radiographic assessment, (2) altered conditions of callus components as determined by µCT, and (3) decreased maximum bending moment measured by a three-point-bending test compared with ordinary fracture healing. METHODS: Male C57BL/6NCrl mice were randomly assigned to five groups and four different times (five to 10 mice per group and time). Only the right femur from each mouse was used for analysis: the trauma hemorrhage (TH) group received a pressure-controlled hemorrhagic shock via catheter; the osteotomy (Fx) group underwent osteotomy and implantation of an external fixator on the right femur; the combined trauma (THFx) group received hemorrhagic shock and an external fixator with osteotomy; the sham group underwent implantation of a catheter and external fixator but had no blood loss or osteotomy, and the control group underwent no interventions. After 2, 3, 4, or 6 weeks, five to 10 animals of each group were sacrificed. Bones were analyzed macroscopically and via radiographs, µCT, and three-point-bending test. Statistical significance was set at a probability less than 0.05. Comparisons were performed using the Mann-Whitney U or the Kruskal-Wallis test. RESULTS: In the Fx group, the osteotomy gap was stable and bridged after 2 weeks in contrast to some bones in the THFx group where stable bridging did not occur. No difference was observed between the groups. µCT analysis showed reduced density of bone including callus (THFx: 1.17 g/cm3; interquartile range [IQR], 0.04 g/cm3; Fx: 1.22 g/cm3; IQR, 0.04 g/cm3; p = 0.002; difference of medians [DM], -0.048; 95% CI, -0.073 to -0.029) and increased share of callus per volume of bone mass (%) after 2 weeks in the THFx group compared with the Fx group (THFx: 44.16%; IQR, 8.66%; Fx: 36.73%; IQR, 4.39%; p = 0.015; DM, 7.634; 95% CI, 2.018-10.577). The three-point-bending test established a decreased maximum bending moment in the THFx group compared with the Fx group 2 weeks after surgery (THFx: 7.10 Nmm; IQR, 11.25 Nmm; Fx: 11.25 Nmm; IQR, 5.70 Nmm; p = 0.026; DM, -5.043; 95% CI, -10.867 to -0.74). No differences were observed between the THFx and Fx groups after more than 2 weeks. CONCLUSION: In this in vivo mouse fracture model, we conclude that hemorrhagic shock retards fracture healing during the early phase of the facture healing process. CLINICAL RELEVANCE: A severe hemorrhagic shock in patients could result in initial delayed fracture healing and needs special attention. We plan to conduct a prospective, observational clinical research study to analyze if delayed fracture healing occurs in patients after severe blood loss.


Assuntos
Calo Ósseo/fisiopatologia , Fraturas do Fêmur/complicações , Consolidação da Fratura , Choque Hemorrágico/complicações , Animais , Fenômenos Biomecânicos , Calo Ósseo/diagnóstico por imagem , Modelos Animais de Doenças , Fraturas do Fêmur/diagnóstico por imagem , Fraturas do Fêmur/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Fatores de Risco , Fatores de Tempo , Microtomografia por Raio-X
12.
BMC Nephrol ; 18(1): 134, 2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28407760

RESUMO

BACKGROUND: Patients with an impaired renal function show a high incidence of bone and mineral disturbances. These 'chronic kidney disease - mineral and bone disorders' (CKD-MBD) range from high turnover osteoporosis to adynamic bone disease. Currently, the histomorphometric analysis of a bone biopsy taken from the iliac crest is viewed as the gold standard for CKD-MBD subtype differentiation. However, the clinical relevance of such a biopsy is questionable since iliac crest fractures are an extremely rare finding. Therefore, we aimed to elucidate if the histomorphometric parameter 'trabecular bone volume (BV/TV)' from the iliac crest is representative for other biopsy locations. We chose two skeletal sites of higher fracture risk for testing, namely, the tibial bone and the lumbar spine, to examine if the current gold standard of bone biopsy is indeed golden. METHODS: Bone biopsies were taken from 12 embalmed body donors at the iliac crest, the proximal tibia, and the lumbar vertebral body, respectively. Masson-Goldner stained sections of methyl methacrylate embedded biopsies were used for trabecular bone volume calculation. Furthermore, exemplary µ-computed tomography (XtremeCT) scans with subsequent analysis were performed. RESULTS: Median values of trabecular bone volume were comparable between all body donors with median (interquartile range, IQR) 18.3% (10.9-22.9%) at the iliac crest, 21.5% (9.5-40.1%) at the proximal tibia, and 16.3% (11.4-25.0%) at the lumbar spine. However, single values showed extensive intra-individual variation, which were also confirmed by XtremeCT imaging. CONCLUSIONS: Distinct intra-individual heterogeneity of trabecular bone volume elucidate why a bone biopsy from one site does not necessarily predict patient relevant endpoints like hip or spine fractures. Physicians interpreting bone biopsy results should know this limitation of the current gold standard for CKD-MBD diagnostic, especially, when systemic therapeutic decisions should be based on it.


Assuntos
Biópsia/métodos , Ílio/citologia , Vértebras Lombares/citologia , Tíbia/citologia , Idoso , Cadáver , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
J Biomed Mater Res B Appl Biomater ; 105(2): 350-365, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26511430

RESUMO

Despite innovative surgical techniques and use of current frontal sinus stents from different materials, the problem of treatment failure with consecutive reoperation remains present. The aim of our study is to investigate biocompatibility, degradation kinetics, and functionality of a newly developed fluoride-coated magnesium-based nasal stent. A minipig anatomy of frontal sinus adapted design and an external surgical approach were developed and established. The functionality of the stents was evaluated endoscopically. The stent-tissue blocks were analysed after 90 and 180 days using microcomputed tomography (µ-CT), histology, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). Functional evaluation revealed an unobstructed stent lumen in all cases. Histological analysis showed moderate mucosal hyperplasia with a mild, nonspecific inflammatory response, and nonosteoconductive effect. Rejection reactions or necrosis did not occur. The volumetric analysis of the stents showed 51% volume loss after 180 days. The EDS analysis did not detect any neodymium (Nd) in the mucosa or bone. The Mg-2 wt % Nd stents are a promising option when treating the narrow passages following paranasal sinus surgery. In particular, its good biocompatibility and good functionality facilitate the re-epithelization of these constricted passages. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 350-365, 2017.


Assuntos
Implantes Absorvíveis , Ligas , Materiais Revestidos Biocompatíveis , Fluoretos , Seio Frontal , Compostos de Magnésio , Stents , Ligas/química , Ligas/farmacologia , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Fluoretos/química , Fluoretos/farmacologia , Seio Frontal/metabolismo , Seio Frontal/patologia , Seio Frontal/cirurgia , Magnésio/química , Magnésio/farmacologia , Compostos de Magnésio/química , Compostos de Magnésio/farmacologia , Neodímio/química , Neodímio/farmacologia , Suínos , Porco Miniatura
14.
J Orthop Res ; 34(12): 2207-2214, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28005292

RESUMO

This is the first larger study analyzing the use of magnesium-based screws for fixation of modified Chevron osteotomies in hallux valgus surgery. Forty-four patients (45 feet) were included in this prospective study. A modified Chevron osteotomy was performed on every patient and a magnesium screw used for fixation. The mean clinical follow up was 21.4 weeks. The mean age of the patients was 45.5 years. Forty patients could be provided with the implant, in four patients the surgeon decided to change to a standard metallic implant. The AOFAS, FAAM and pain NRS-scale improved markedly. The hallux valgus angle, intermetatarsal angle and sesamoid position improved significantly. Seven patients showed dorsal subluxation, rotation or medial shifting of the metatarsal heads within the first 3 months. One of these patients was revised, in all others the findings were considered clinically not significant or the patients refused revision. This study shows the feasibility of using magnesium screws in hallux valgus-surgery. Surgeons starting with the use of these implants should be aware of the proper handling of these implants and should know about corrosion effects during healing and its radiographic appearance. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2207-2214, 2016.


Assuntos
Implantes Absorvíveis , Parafusos Ósseos , Hallux Valgus/cirurgia , Magnésio , Osteotomia/instrumentação , Adulto , Idoso , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Mater Sci Eng C Mater Biol Appl ; 59: 129-135, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26652357

RESUMO

Implants made of degradable magnesium alloys are a potential alternative to conventional orthopaedic implant materials, e.g. stainless steel or titanium. Intramedullary nails made of the magnesium alloy LAE442 were subjected to cyclic fatigue tests in both distilled water and Hank's Balanced Salt Solution (HBSS) at 37.5°C until implant failure or a limit of 500,000cycles was reached. In distilled water, four of the five nails were still intact after the end of the biomechanical test. In HBSS, a breakage within the first 70,000 bending cycles was observed. Additionally, the degradation rate of this alloy was determined in HBSS according to the weight loss method (0.24±0.12mmyear(-1)) and based on gas release (0.21±0.03mmyear(-1)) with a standard eudiometer. A cytotoxicity test with L929 cells was carried out in accordance with EN ISO 10993-5/12. This test demonstrated sufficient cell viability of the diluted extracts (50%, 25% and 12.5%). The relative metabolic activity of the 100% extract was reduced slightly below 70%, which is classified as a threshold value for cytotoxicity. In conclusion, this in vitro study indicates that intramedullary nails made of LAE442 may not have the required fatigue resistance for load-bearing applications and the development of a corrosion-protective coating may be necessary to prevent early failure of the implant.


Assuntos
Implantes Absorvíveis , Pinos Ortopédicos , Magnésio , Teste de Materiais , Animais , Linhagem Celular Tumoral , Corrosão , Camundongos
16.
Biomed Res Int ; 2015: 652940, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26167493

RESUMO

UNLABELLED: Nickel-titanium shape memory alloy (NiTi-SMA) implants might allow modulating fracture healing, changing their stiffness through alteration of both elastic modulus and cross-sectional shape by employing the shape memory effect (SME). HYPOTHESES: a novel NiTi-SMA plate stabilizes tibia osteotomies in rabbits. After noninvasive electromagnetic induction heating the alloy exhibits the SME and the plate changes towards higher stiffness (inverse dynamization) resulting in increased fixation stiffness and equal or better bony healing. In 14 rabbits, 1.0 mm tibia osteotomies were fixed with our experimental plate. Animals were randomised for control or induction heating at three weeks postoperatively. Repetitive X-ray imaging and in vivo measurements of bending stiffness were performed. After sacrifice at 8 weeks, macroscopic evaluation, µCT, and post mortem bending tests of the tibiae were carried out. One death and one early implant dislocation occurred. Following electromagnetic induction heating, radiographic and macroscopic changes of the implant proved successful SME activation. All osteotomies healed. In the treatment group, bending stiffness increased over time. Differences between groups were not significant. In conclusion, we demonstrated successful healing of rabbit tibia osteotomies using our novel NiTi-SMA plate. We demonstrated shape-changing SME in-vivo through transcutaneous electromagnetic induction heating. Thus, future orthopaedic implants could be modified without additional surgery.


Assuntos
Materiais Biocompatíveis , Placas Ósseas , Fixação Interna de Fraturas/instrumentação , Osteotomia/instrumentação , Tíbia/cirurgia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Modelos Animais de Doenças , Fixação Interna de Fraturas/métodos , Masculino , Níquel/química , Níquel/uso terapêutico , Osteotomia/métodos , Coelhos , Radiografia , Tíbia/diagnóstico por imagem , Titânio/química , Titânio/uso terapêutico
17.
Acta Biomater ; 18: 249-61, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25769231

RESUMO

Up to now, different surgical techniques and stent systems have already been developed and tested for the continuous and adequate ventilation of the frontal sinuses. However, the results achieved still remain poor. Magnesium-based implants have been successfully used in numerous clinical applications. Offering excellent biocompatibility and biodegradability it may be the ideal material for the development of novel implants of the nasal sinus. Here, we present for the first time results on the behaviour of magnesium alloy in a unique environment, i.e. in contact to the nasal mucosa, air and nasal secretion. In a prospective longitudinal study, magnesium fluoride-coated MgNd2 specimens were implanted in the frontal sinuses of 12 minipigs for the investigation of biocompatibility and of the interface between the implant and the mucosa. Endoscopic examinations, histopathological evaluation and EDX measurements were performed regularly up to 180days. Endoscopic evaluation showed focal mucosal reaction, however, without affecting the patency of the sinus. In addition, no signs of bacterial infections were observed. The EDX analyses showed a marginal but steady increase in the Mg concentration in the mucosa over 180days. Histological analysis revealed a locally confined moderate mucosal hyperplasia and unspecific inflammatory reaction. Furthermore, we did not find any osteoinductive effects of the magnesium alloy. The results indicate the excellent biocompatibility of the MgNd2 alloy in contact with nasal mucosa and provide a novel material compound and solid proof-of-principle for the development of magnesium-based nasal stents.


Assuntos
Ligas/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Fluoretos/farmacologia , Compostos de Magnésio/farmacologia , Mucosa Nasal/efeitos dos fármacos , Seios Paranasais/efeitos dos fármacos , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Endoscopia , Inflamação/patologia , Magnésio/metabolismo , Mucosa Nasal/ultraestrutura , Seios Paranasais/cirurgia , Próteses e Implantes , Espectrometria por Raios X , Coloração e Rotulagem , Suínos , Porco Miniatura
18.
Mater Sci Eng C Mater Biol Appl ; 49: 305-315, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25686954

RESUMO

The use of absorbable implant materials for fixation after bone fracture helps to avoid a second surgery for implant removal and the risks and costs involved. Magnesium (Mg) is well known as a potential metallic material for degradable implants. The aim of the present in vitro study was to evaluate if degradable LAE442-based magnesium plate-screw-systems are suitable candidates for osteosynthesis implants in load-bearing bones. The corrosion behaviour was tested concerning the influence of different surface treatments, coatings and screw torques. Steel plates and screws of the same size served as control. Plates without special treatment screwed on up to a specified torque of 15cNm or 7cNm, NaOH treated plates (15cNm), magnesium fluoride coated plates (15cNm) and steel plates as control (15cNm) were examined in pH-buffered, temperature-controlled SBF solution for two weeks. The experimental results indicate that the LAE442 plates and screws coated with magnesium fluoride revealed a lower hydrogen evolution in SBF solution as well as a lower weight loss and volume decrease in µ-computed tomography (µCT). The nanoindentation and SEM/EDX measurements at several plate areas showed no significant differences. Summarized, the different screw torques did not affect the corrosion behaviour differently. Also the NaOH treatment seemed to have no essential influence on the degradation kinetics. The plates coated with magnesium fluoride showed a decreased corrosion rate. Hence, it is recommended to consider this coating for the next in vivo study.


Assuntos
Ligas/metabolismo , Osso e Ossos/metabolismo , Implantes Absorvíveis , Animais , Placas Ósseas , Parafusos Ósseos , Corrosão , Fixação Interna de Fraturas/métodos , Hidrogênio/metabolismo , Magnésio/metabolismo , Coelhos
19.
J Nanobiotechnology ; 11: 34, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24112871

RESUMO

BACKGROUND: In orthopaedic surgery, accumulation of agents such as anti-infectives in the bone as target tissue is difficult. The use of magnetic nanoparticles (MNPs) as carriers principally enables their accumulation via an externally applied magnetic field. Magnetizable implants are principally able to increase the strength of an externally applied magnetic field to reach also deep-seated parts in the body. Therefore, the integration of bone-addressed therapeutics in MNPs and their accumulation at a magnetic orthopaedic implant could improve the treatment of implant related infections. In this study a martensitic steel platelet as implant placeholder was used to examine its accumulation and retention capacity of MNPs in an in vitro experimental set up considering different experimental frame conditions as magnet quantity and distance to each other, implant thickness and flow velocity. RESULTS: The magnetic field strength increased to approximately 112% when a martensitic stainless steel platelet was located between the magnet poles. Therewith a significantly higher amount of magnetic nanoparticles could be accumulated in the area of the platelet compared to the sole magnetic field. During flushing of the tube system mimicking the in vivo blood flow, the magnetized platelet was able to retain a higher amount of MNPs without an external magnetic field compared to the set up with no mounted platelet during flushing of the system. Generally, a higher flow velocity led to lower amounts of accumulated MNPs. A higher quantity of magnets and a lower distance between magnets led to a higher magnetic field strength. Albeit not significantly the magnetic field strength tended to increase with thicker platelets. CONCLUSION: A martensitic steel platelet significantly improved the attachment of magnetic nanoparticles in an in vitro flow system and therewith indicates the potential of magnetic implant materials in orthopaedic surgery. The use of a remanent magnetic implant material could improve the efficiency of capturing MNPs especially when the external magnetic field is turned off thus facilitating and prolonging the effect. In this way higher drug levels in the target area might be attained resulting in lower inconveniences for the patient.


Assuntos
Placas Ósseas , Óxido Ferroso-Férrico/química , Nanopartículas de Magnetita/química , Aço Inoxidável/química , Animais , Humanos , Campos Magnéticos , Imãs , Modelos Biológicos , Reologia
20.
Biomed Mater ; 8(4): 045012, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23813445

RESUMO

Magnesium alloys are promising implant materials for use in orthopaedic applications. In the present study, screws made of the Mg-alloy ZEK100 (n = 12) were implanted in rabbit tibiae for four and six weeks, respectively. For degradation analysis, in vivo µ-computed tomography (µCT), a determination of the weight changes and SEM/EDX examinations of the screws were performed. Screw retention forces were verified by uniaxial pull-out tests. Additionally, soft-tissue biocompatibility was estimated using routine histological methods (H&E staining) and the immunohistological characterization of B- and T-cells. After six weeks, a 7.5% weight reduction occurred and, in dependence of the implant surrounding, the volume loss (µCT) reached 9.6% (screw head) and 5.0% for the part of the thread in the marrow cavity. Pull-out forces significantly decreased to 44.4% in comparison with the origin value directly after implantation. Soft tissue reactions were characterized by macrophage and lymphocyte infiltration, whereas T-cells as well as B-cells could be observed. In comparison to MgCa0.8-screws, the degradation rate and inflammatory tissue response were increased and the screw holding power was decreased after six weeks. In conclusion, ZEK100-screws seem to be inferior to MgCa0.8-screws, although their initial strength was more appropriate.


Assuntos
Ligas/química , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Parafusos Ósseos , Teste de Materiais , Animais , Cálcio/química , Feminino , Imuno-Histoquímica , Inflamação , Linfócitos/citologia , Macrófagos/citologia , Magnésio/química , Microscopia Eletrônica de Varredura , Coelhos , Tíbia/patologia , Fatores de Tempo , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA