Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anesthesiology ; 138(6): 611-623, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36893015

RESUMO

BACKGROUND: Maintenance of ion homeostasis is essential for normal brain function. Inhalational anesthetics are known to act on various receptors, but their effects on ion homeostatic systems, such as sodium/potassium-adenosine triphosphatase (Na+/K+-ATPase), remain largely unexplored. Based on reports demonstrating global network activity and wakefulness modulation by interstitial ions, the hypothesis was that deep isoflurane anesthesia affects ion homeostasis and the key mechanism for clearing extracellular potassium, Na+/K+-ATPase. METHODS: Using ion-selective microelectrodes, this study assessed isoflurane-induced extracellular ion dynamics in cortical slices of male and female Wistar rats in the absence of synaptic activity, in the presence of two-pore-domain potassium channel antagonists, during seizures, and during spreading depolarizations. The specific isoflurane effects on Na+/K+-ATPase function were measured using a coupled enzyme assay and studied the relevance of the findings in vivo and in silico. RESULTS: Isoflurane concentrations clinically relevant for burst suppression anesthesia increased baseline extracellular potassium (mean ± SD, 3.0 ± 0.0 vs. 3.9 ± 0.5 mM; P < 0.001; n = 39) and lowered extracellular sodium (153.4 ± 0.8 vs. 145.2 ± 6.0 mM; P < 0.001; n = 28). Similar changes in extracellular potassium and extracellular sodium and a substantial drop in extracellular calcium (1.5 ± 0.0 vs. 1.2 ± 0.1 mM; P = 0.001; n = 16) during inhibition of synaptic activity and two-pore-domain potassium suggested a different underlying mechanism. After seizure-like events and spreading depolarization, isoflurane greatly slowed extracellular potassium clearance (63.4 ± 18.2 vs. 196.2 ± 82.4 s; P < 0.001; n = 14). Na+/K+-ATPase activity was markedly reduced after isoflurane exposure (greater than 25%), affecting specifically the α2/3 activity fraction. In vivo, isoflurane-induced burst suppression resulted in impaired extracellular potassium clearance and interstitial potassium accumulation. A computational biophysical model reproduced the observed effects on extracellular potassium and displayed intensified bursting when Na+/K+-ATPase activity was reduced by 35%. Finally, Na+/K+-ATPase inhibition with ouabain induced burst-like activity during light anesthesia in vivo. CONCLUSIONS: The results demonstrate cortical ion homeostasis perturbation and specific Na+/K+-ATPase impairment during deep isoflurane anesthesia. Slowed potassium clearance and extracellular accumulation might modulate cortical excitability during burst suppression generation, while prolonged Na+/K+-ATPase impairment could contribute to neuronal dysfunction after deep anesthesia.


Assuntos
Isoflurano , Ratos , Animais , Masculino , Feminino , Isoflurano/farmacologia , Ratos Wistar , Homeostase , Encéfalo , Convulsões , Potássio/farmacologia , Sódio , Adenosina Trifosfatases
2.
J Cereb Blood Flow Metab ; 43(2): 210-230, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36329390

RESUMO

Spreading depolarization (SD) occurs in a plethora of clinical conditions including migraine aura, delayed ischemia after subarachnoid hemorrhage and malignant hemispheric stroke. It describes waves of near-breakdown of ion homeostasis, particularly Na+ homeostasis in brain gray matter. SD induces tone alterations in resistance vessels, causing either hyperperfusion in healthy tissue; or hypoperfusion (inverse hemodynamic response = spreading ischemia) in tissue at risk. Observations from mice with genetic dysfunction of the ATP1A2-encoded α2-isoform of Na+/K+-ATPase (α2NaKA) suggest a mechanistic link between (1) SD, (2) vascular dysfunction, and (3) salt-sensitive hypertension via α2NaKA. Thus, α2NaKA-dysfunctional mice are more susceptible to SD and show a shift toward more inverse hemodynamic responses. α2NaKA-dysfunctional patients suffer from familial hemiplegic migraine type 2, a Mendelian model disease of SD. α2NaKA-dysfunctional mice are also a genetic model of salt-sensitive hypertension. To determine whether SD thresholds and hemodynamic responses are also altered in other genetic models of salt-sensitive hypertension, we examined these variables in stroke-prone spontaneously hypertensive rats (SHRsp). Compared with Wistar Kyoto control rats, we found in SHRsp that electrical SD threshold was significantly reduced, propagation speed was increased, and inverse hemodynamic responses were prolonged. These results may have relevance to both migraine with aura and stroke.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Hipertensão , Enxaqueca com Aura , Acidente Vascular Cerebral , Ratos , Camundongos , Animais , Ratos Endogâmicos SHR , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Enxaqueca com Aura/genética , Cloreto de Sódio na Dieta , Hemodinâmica , Ratos Endogâmicos WKY , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Hipertensão/complicações
3.
J Cereb Blood Flow Metab ; 40(3): 622-638, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30819023

RESUMO

Compromised Na+/K+-ATPase function is associated with the occurrence of spreading depolarization (SD). Mutations in ATP1A2, the gene encoding the α2 isoform of the Na+/K+-ATPase, were identified in patients with familial hemiplegic migraine type 2 (FHM2), a Mendelian model disease for SD. This suggests a distinct role for the α2 isoform in modulating SD susceptibility and raises questions about underlying mechanisms including the roles of other Na+/K+-ATPase α isoforms. Here, we investigated the effects of genetic ablation and pharmacological inhibition of α1, α2, and α3 on SD using heterozygous knock-out mice. We found that only α2 heterozygous mice displayed higher SD susceptibility when challenged with prolonged extracellular high potassium concentration ([K+]o), a pronounced post SD oligemia and higher SD speed in-vivo. By contrast, under physiological [K+]o, α2 heterozygous mice showed similar SD susceptibility compared to wild-type littermates. Deficiency of α3 resulted in increased resistance against electrically induced SD in-vivo, whereas α1 deficiency did not affect SD. The results support important roles of the α2 isoform in SD. Moreover, they suggest that specific experimental conditions can be necessary to reveal an inherent SD phenotype by driving a (meta-) stable system into decompensation, reminiscent of the episodic nature of SDs in various diseases.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Doenças Genéticas Inatas/enzimologia , Doenças Genéticas Inatas/genética , Enxaqueca com Aura/enzimologia , Enxaqueca com Aura/genética , ATPase Trocadora de Sódio-Potássio/deficiência , Animais , Modelos Animais de Doenças , Doenças Genéticas Inatas/patologia , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Camundongos Knockout , Mutação , ATPase Trocadora de Sódio-Potássio/metabolismo
4.
Front Neurosci ; 13: 373, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068779

RESUMO

Spreading depolarizations (SDs) are characterized by near-complete breakdown of the transmembrane ion gradients, neuronal oedema and activity loss (=depression). The SD extreme in ischemic tissue, termed 'terminal SD,' shows prolonged depolarization, in addition to a slow baseline variation called 'negative ultraslow potential' (NUP). The NUP is the largest bioelectrical signal ever recorded from the human brain and is thought to reflect the progressive recruitment of neurons into death in the wake of SD. However, it is unclear whether the NUP is a field potential or results from contaminating sensitivities of platinum electrodes. In contrast to Ag/AgCl-based electrodes in animals, platinum/iridium electrodes are the gold standard for intracranial direct current (DC) recordings in humans. Here, we investigated the full continuum including short-lasting SDs under normoxia, long-lasting SDs under systemic hypoxia, and terminal SD under severe global ischemia using platinum/iridium electrodes in rats to better understand their recording characteristics. Sensitivities for detecting SDs or NUPs were 100% for both electrode types. Nonetheless, the platinum/iridium-recorded NUP was 10 times smaller in rats than humans. The SD continuum was then further investigated by comparing subdural platinum/iridium and epidural titanium peg electrodes in patients. In seven patients with either aneurysmal subarachnoid hemorrhage or malignant hemispheric stroke, two epidural peg electrodes were placed 10 mm from a subdural strip. We found that 31/67 SDs (46%) on the subdural strip were also detected epidurally. SDs that had longer negative DC shifts and spread more widely across the subdural strip were more likely to be observed in epidural recordings. One patient displayed an SD-initiated NUP while undergoing brain death despite continued circulatory function. The NUP's amplitude was -150 mV subdurally and -67 mV epidurally. This suggests that the human NUP is a bioelectrical field potential rather than an artifact of electrode sensitivity to other factors, since the dura separates the epidural from the subdural compartment and the epidural microenvironment was unlikely changed, given that ventilation, arterial pressure and peripheral oxygen saturation remained constant during the NUP. Our data provide further evidence for the clinical value of invasive electrocorticographic monitoring, highlighting important possibilities as well as limitations of less invasive recording techniques.

5.
J Cereb Blood Flow Metab ; 37(5): 1687-1705, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-26994042

RESUMO

In rats, spreading depolarization induces vasodilation/hyperemia in naïve tissue but the inverse response when artificial cerebrospinal fluid is topically applied to the brain containing (a) a nitric oxide-lowering agent and (b) elevated K+. The inverse response is characterized by severe vasoconstriction/ischemia. The perfusion deficit runs together with the depolarization in the tissue (=spreading ischemia). Here, we found in male Wistar rats that pre-treatment with artificial cerebrospinal fluid containing elevated K+ in vivo led to a selective decline in α2/α3 Na+/K+-ATPase activity, determined spectrophotometrically ex vivo. Moreover, spreading ischemia, recorded with laser-Doppler flowmetry and electrocorticography, resulted from artificial cerebrospinal fluid containing a nitric oxide-lowering agent in combination with the Na+/K+-ATPase inhibitor ouabain at a concentration selectively inhibiting α2/α3 activity. Decline in α2/α3 activity results in increased Ca2+ uptake by internal stores of astrocytes, vascular myocytes, and pericytes since Ca2+ outflux via plasmalemmal Na+/Ca2+-exchanger declines. Augmented Ca2+ mobilization from internal stores during spreading depolarization might enhance vasoconstriction, thus, contributing to spreading ischemia. Accordingly, spreading ischemia was significantly shortened when intracellular Ca2+ stores were emptied by pre-treatment with thapsigargin, an inhibitor of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA). These findings might have relevance for clinical conditions, in which spreading ischemia occurs such as delayed cerebral ischemia after subarachnoid hemorrhage.


Assuntos
Isquemia Encefálica/fisiopatologia , Circulação Cerebrovascular/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Vasoconstrição/fisiologia , Animais , Isquemia Encefálica/metabolismo , Cálcio/metabolismo , Líquido Cefalorraquidiano/química , Circulação Cerebrovascular/efeitos dos fármacos , Eletrocorticografia , Fluxometria por Laser-Doppler , Masculino , Cloreto de Potássio/farmacologia , Ratos Wistar , Espectrofotometria , Vasoconstrição/efeitos dos fármacos
6.
Stroke ; 42(10): 2917-22, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21836085

RESUMO

BACKGROUND AND PURPOSE: Experimental and clinical evidence suggests that prolonged spreading depolarizations (SDs) are a promising target for therapeutic intervention in stroke because they recruit tissue at risk into necrosis by protracted intracellular calcium surge and massive glutamate release. Unfortunately, unlike SDs in healthy tissue, they are resistant to drugs such as N-methyl-d-aspartate-receptor antagonists. This drug resistance of SD in low perfusion areas may be due to the gradual rise of extracellular potassium before SD onset. Brain slices from patients undergoing surgery for intractable epilepsy allow for screening of drugs, targeting pharmacoresistant SDs under elevated potassium in human tissue. However, network changes associated with epilepsy may interfere with tissue susceptibility to SD. This could distort the results of pharmacological tests. METHODS: We investigated the threshold for SD, induced by a gradual rise of potassium, in neocortex slices of patients with intractable epilepsy and of chronically epileptic rats as well as age-matched and younger control rats using combined extracellular potassium/field recordings and intrinsic optical imaging. RESULTS: Both age and epilepsy significantly increased the potassium threshold, which was similarly high in epileptic rat and human slices (23.6±2.4 mmol/L versus 22.3±2.8 mmol/L). CONCLUSIONS: Our results suggest that chronic epilepsy confers resistance against SD. This should be considered when human tissue is used for screening of neuroprotective drugs. The finding of similar potassium thresholds for SD in epileptic human and rat neocortex challenges previous speculations that the resistance of the human brain against SD is markedly higher than that of the rodent brain.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Epilepsia/fisiopatologia , Neocórtex/fisiopatologia , Animais , Epilepsia/induzido quimicamente , Humanos , Masculino , Pilocarpina , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA