Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1359652, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38454929

RESUMO

Background: Glioblastoma is one of the most aggressive primary brain tumors, with a poor outcome despite multimodal treatment. Methylation of the MGMT promoter, which predicts the response to temozolomide, is a well-established prognostic marker for glioblastoma. However, a difference in survival can still be detected within the MGMT methylated group, with some patients exhibiting a shorter survival than others, emphasizing the need for additional predictive factors. Methods: We analyzed DIAPH3 expression in glioblastoma samples from the cancer genome atlas (TCGA). We also retrospectively analyzed one hundred seventeen histological glioblastomas from patients operated on at Saint-Luc University Hospital between May 2013 and August 2019. We analyzed the DIAPH3 expression, explored the relationship between mRNA levels and Patient's survival after the surgical resection. Finally, we assessed the methylation pattern of the DIAPH3 promoter using a targeted deep bisulfite sequencing approach. Results: We found that 36% and 1% of the TCGA glioblastoma samples exhibit copy number alterations and mutations in DIAPH3, respectively. We scrutinized the expression of DIAPH3 at single cell level and detected an overlap with MKI67 expression in glioblastoma proliferating cells, including neural progenitor-like, oligodendrocyte progenitor-like and astrocyte-like states. We quantitatively analyzed DIAPH3 expression in our cohort and uncovered a positive correlation between DIAPH3 mRNA level and patient's survival. The effect of DIAPH3 was prominent in MGMT-methylated glioblastoma. Finally, we report that the expression of DIAPH3 is at least partially regulated by the methylation of three CpG sites in the promoter region. Conclusion: We propose that combining the DIAPH3 expression with MGMT methylation could offer a better prediction of survival and more adapted postsurgical treatment for patients with MGMT-methylated glioblastoma.

2.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742913

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wreaked havoc all over the world. Although vaccines for the disease have recently become available and started to be administered to the population in various countries, there is still a strong and urgent need for treatments to cure COVID-19. One of the safest and fastest strategies is represented by drug repurposing (DRPx). In this study, thirty compounds with known safety profiles were identified from a chemical library of Phase II-and-up compounds through a combination of SOM Biotech's Artificial Intelligence (AI) technology, SOMAIPRO, and in silico docking calculations with third-party software. The selected compounds were then tested in vitro for inhibitory activity against SARS-CoV-2 main protease (3CLpro or Mpro). Of the thirty compounds, three (cynarine, eravacycline, and prexasertib) displayed strong inhibitory activity against SARS-CoV-2 3CLpro. VeroE6 cells infected with SARS-CoV-2 were used to find the cell protection capability of each candidate. Among the three compounds, only eravacycline showed potential antiviral activities with no significant cytotoxicity. A further study is planned for pre-clinical trials.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Inteligência Artificial , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais
3.
Elife ; 102021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33899739

RESUMO

Diaphanous (DIAPH) three (DIAPH3) is a member of the formin proteins that have the capacity to nucleate and elongate actin filaments and, therefore, to remodel the cytoskeleton. DIAPH3 is essential for cytokinesis as its dysfunction impairs the contractile ring and produces multinucleated cells. Here, we report that DIAPH3 localizes at the centrosome during mitosis and regulates the assembly and bipolarity of the mitotic spindle. DIAPH3-deficient cells display disorganized cytoskeleton and multipolar spindles. DIAPH3 deficiency disrupts the expression and/or stability of several proteins including the kinetochore-associated protein SPAG5. DIAPH3 and SPAG5 have similar expression patterns in the developing brain and overlapping subcellular localization during mitosis. Knockdown of SPAG5 phenocopies DIAPH3 deficiency, whereas its overexpression rescues the DIAHP3 knockdown phenotype. Conditional inactivation of Diaph3 in mouse cerebral cortex profoundly disrupts neurogenesis, depleting cortical progenitors and neurons, leading to cortical malformation and autistic-like behavior. Our data uncover the uncharacterized functions of DIAPH3 and provide evidence that this protein belongs to a molecular toolbox that links microtubule dynamics during mitosis to aneuploidy, cell death, fate determination defects, and cortical malformation.


Assuntos
Comportamento Animal , Córtex Cerebral/metabolismo , Forminas/deficiência , Microtúbulos/metabolismo , Mitose , Neurogênese , Neurônios/metabolismo , Fuso Acromático/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Comportamento Alimentar , Forminas/genética , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Humanos , Locomoção , Aprendizagem em Labirinto , Camundongos , Camundongos Knockout , Microtúbulos/genética , Microtúbulos/patologia , Células NIH 3T3 , Neurônios/patologia , Fenótipo , Comportamento Social , Fuso Acromático/genética , Fuso Acromático/patologia
4.
Amyloid ; 26(2): 74-84, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31119947

RESUMO

Objective: To assess the transthyretin (TTR) stabilization activity of tolcapone (SOM0226) in patients with hereditary ATTR amyloidosis, asymptomatic carriers and healthy volunteers. Methods: A phase IIa proof-of-concept trial included two phases separated by a 6-week washout period. Phase A: single 200 mg dose of tolcapone; phase B: three 100 mg doses taken at 4 h intervals. The primary efficacy variable was TTR stabilization. Results: Seventeen subjects were included (wild type, n = 6; mutation TTR Val30Met, n = 11). TTR stabilization was observed in all participants. Two hours after dosing, 82% of participants in phase A and 93% of those in phase B reached a TTR stabilization value of at least 20%. In phase A, there was an increase of 52% in TTR stabilization vs baseline values 2 h after dosing, which decreased to 22.9% at 8 h. In phase B, there was a significant increase of 38.8% in TTR stabilization 2 h after the first 100 mg dose. This difference was maintained after 10 h and decreased after 24 h. No serious adverse events were observed. Conclusions: The ability of tolcapone for stabilizing TTR supports further development and repositioning of the drug for the treatment of ATTR amyloidosis. EudraCT trial number: 2014-001586-27 ClinicalTrials.gov Identifier: NCT02191826.


Assuntos
Neuropatias Amiloides Familiares/tratamento farmacológico , Pré-Albumina/metabolismo , Estudo de Prova de Conceito , Agregação Patológica de Proteínas/prevenção & controle , Tolcapona/uso terapêutico , Adulto , Idoso , Neuropatias Amiloides Familiares/metabolismo , Inibidores de Catecol O-Metiltransferase/uso terapêutico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Pré-Albumina/genética , Tolcapona/farmacologia
5.
Cereb Cortex ; 27(5): 2841-2856, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27178193

RESUMO

A unique population of cells, called "lot cells," circumscribes the path of the lateral olfactory tract (LOT) in the rodent brain and acts to restrict its position at the lateral margin of the telencephalon. Lot cells were believed to originate in the dorsal pallium (DP). We show that Lhx2 null mice that lack a DP show a significant increase in the number of mGluR1/lot cells in the piriform cortex, indicating a non-DP origin of these cells. Since lot cells present common developmental features with Cajal-Retzius (CR) cells, we analyzed Wnt3a- and Dbx1-reporter mouse lines and found that mGluR1/lot cells are not generated in the cortical hem, ventral pallium, or septum, the best characterized sources of CR cells. Finally, we identified a novel origin for the lot cells by combining in utero electroporation assays and histochemical characterization. We show that mGluR1/lot cells are specifically generated in the lateral thalamic eminence and that they express mitral cell markers, although a minority of them express ΔNp73 instead. We conclude that most mGluR1/lot cells are prospective mitral cells migrating to the accessory olfactory bulb (OB), whereas mGluR1+, ΔNp73+ cells are CR cells that migrate through the LOT to the piriform cortex and the OB.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Células-Tronco/fisiologia , Tálamo/citologia , Tálamo/metabolismo , Animais , Movimento Celular , Células Cultivadas , Embrião de Mamíferos , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Gravidez , Receptores de Glutamato Metabotrópico/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo
6.
Nat Commun ; 7: 10787, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26902880

RESUMO

Transthyretin (TTR) is a plasma homotetrameric protein implicated in fatal systemic amyloidoses. TTR tetramer dissociation precedes pathological TTR aggregation. Native state stabilizers are promising drugs to treat TTR amyloidoses. Here we repurpose tolcapone, an FDA-approved molecule for Parkinson's disease, as a potent TTR aggregation inhibitor. Tolcapone binds specifically to TTR in human plasma, stabilizes the native tetramer in vivo in mice and humans and inhibits TTR cytotoxicity. Crystal structures of tolcapone bound to wild-type TTR and to the V122I cardiomyopathy-associated variant show that it docks better into the TTR T4 pocket than tafamidis, so far the only drug on the market to treat TTR amyloidoses. These data indicate that tolcapone, already in clinical trials for familial amyloid polyneuropathy, is a strong candidate for therapeutic intervention in these diseases, including those affecting the central nervous system, for which no small-molecule therapy exists.


Assuntos
Neuropatias Amiloides Familiares/tratamento farmacológico , Benzofenonas/uso terapêutico , Inibidores de Catecol O-Metiltransferase/uso terapêutico , Nitrofenóis/uso terapêutico , Pré-Albumina/metabolismo , Agregação Patológica de Proteínas/tratamento farmacológico , Administração Oral , Animais , Benzofenonas/farmacologia , Inibidores de Catecol O-Metiltransferase/farmacologia , Linhagem Celular , Dimerização , Reposicionamento de Medicamentos , Voluntários Saudáveis , Humanos , Camundongos Transgênicos , Pessoa de Meia-Idade , Nitrofenóis/farmacologia , Pré-Albumina/efeitos dos fármacos , Tolcapona
7.
Cell Microbiol ; 10(5): 1190-207, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18194483

RESUMO

Anthrax lethal toxin (LT) contributes to the immune evasion strategy of Bacillus anthracis by impairing the function of cells of the immune system, such as macrophages and dendritic cells (DCs). Macrophages from certain inbred mice strains undergo rapid death upon LT treatment mediated by caspase-1 activation dependent on Nalp1b, an inflammasome component. Rapid LT-induced death is however, not observed in macrophages from human and many mouse strains. Here, we focused on the responses of various murine DCs to LT. Using a variety of knockout mice, we found that depending on the mouse strain, death of bone marrow-derived DCs and macrophages was mediated either by a fast Nalp1b and caspase-1-dependent, or by a slow caspase-1-independent pathway that was triggered by the impairment of MEK1/2 pathways. Caspase-1-independent death was observed in cells of different genetic backgrounds and interestingly occurred only in immature DCs. Maturation, triggered by different types of stimuli, led to full protection of DCs. These studies illustrate that the cellular damage inflicted by LT depends not only on the innate responses but also on the maturation stage of the cell, which modulates the more general caspase-1-independent responses.


Assuntos
Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Células Dendríticas/imunologia , Animais , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , MAP Quinase Quinase 1/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Especificidade da Espécie
8.
Trends Microbiol ; 13(2): 72-8, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15680766

RESUMO

The past five years have led to a tremendous increase in our molecular understanding of the mode of action of the anthrax toxin, one of the two main virulence factors produced by Bacillus anthracis. The structures of each of the three components of the toxin--lethal factor (LF), edema factor (EF) and protective antigen (PA)--have been solved not only in their monomeric forms but, depending on the subunit, in a heptameric form, bound to their substrate, co-factor or receptor. The endocytic route followed by the toxin has also been unraveled and the enzymatic mechanisms of EF and LF elucidated.


Assuntos
Antraz/metabolismo , Antígenos de Bactérias/fisiologia , Bacillus anthracis/metabolismo , Antraz/microbiologia , Antígenos de Bactérias/química , Bacillus anthracis/química , Toxinas Bacterianas/química , Humanos , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos , Modelos Moleculares , Proteínas de Neoplasias , Receptores de Superfície Celular/metabolismo , Receptores de Peptídeos
9.
EMBO J ; 21(18): 4906-14, 2002 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-12234930

RESUMO

The heteromeric amino acid transporters are composed of a type II glycoprotein and a non-glycosylated polytopic membrane protein. System b(o,+) exchanges dibasic for neutral amino acids. It is composed of rBAT and b(o,+)AT, the latter being the polytopic membrane subunit. Mutations in either of them cause malfunction of the system, leading to cystinuria. b(o,+)AT-reconstituted systems from HeLa or MDCK cells catalysed transport of arginine that was totally dependent on the presence of one of the b(o,+) substrates inside the liposomes. rBAT was essential for the cell surface expression of b(o,+)AT, but it was not required for reconstituted b(o,+)AT transport activity. No system b(o,+) transport was detected in liposomes derived from cells expressing rBAT alone. The reconstituted b(o,+)AT showed kinetic asymmetry. Expressing the cystinuria-specific mutant A354T of b(o,+)AT in HeLa cells together with rBAT resulted in defective arginine uptake in whole cells, which was paralleled by the reconstituted b(o,+)AT activity. Thus, subunit b(o,+)AT by itself is sufficient to catalyse transmembrane amino acid exchange. The polytopic subunits may also be the catalytic part in other heteromeric transporters.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos , Sistemas de Transporte de Aminoácidos/fisiologia , Proteínas de Transporte/metabolismo , Glicoproteínas de Membrana/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Animais , Arginina/metabolismo , Transporte Biológico/fisiologia , Proteínas de Transporte/genética , Cistina/metabolismo , Cistinúria/genética , Cães , Células HeLa , Humanos , Rim/citologia , Leucina/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Glicoproteínas de Membrana/genética , Subunidades Proteicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA