Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Med ; 15(7): e1002606, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30016328

RESUMO

BACKGROUND: Intermittent preventive treatment of malaria in pregnancy (IPTp) with dihydroartemisinin-piperaquine (IPTp-DP) has been shown to reduce the burden of malaria during pregnancy compared to sulfadoxine-pyrimethamine (IPTp-SP). However, limited data exist on how IPTp regimens impact malaria risk during infancy. We conducted a double-blinded randomized controlled trial (RCT) to test the hypothesis that children born to mothers given IPTp-DP would have a lower incidence of malaria during infancy compared to children born to mothers who received IPTp-SP. METHODS AND FINDINGS: We compared malaria metrics among children in Tororo, Uganda, born to women randomized to IPTp-SP given every 8 weeks (SP8w, n = 100), IPTp-DP every 8 weeks (DP8w, n = 44), or IPTp-DP every 4 weeks (DP4w, n = 47). After birth, children were given chemoprevention with DP every 12 weeks from 8 weeks to 2 years of age. The primary outcome was incidence of malaria during the first 2 years of life. Secondary outcomes included time to malaria from birth and time to parasitemia following each dose of DP given during infancy. Results are reported after adjustment for clustering (twin gestation) and potential confounders (maternal age, gravidity, and maternal parasitemia status at enrolment).The study took place between June 2014 and May 2017. Compared to children whose mothers were randomized to IPTp-SP8w (0.24 episodes per person year [PPY]), the incidence of malaria was higher in children born to mothers who received IPTp-DP4w (0.42 episodes PPY, adjusted incidence rate ratio [aIRR] 1.92; 95% CI 1.00-3.65, p = 0.049) and nonsignificantly higher in children born to mothers who received IPT-DP8w (0.30 episodes PPY, aIRR 1.44; 95% CI 0.68-3.05, p = 0.34). However, these associations were modified by infant sex. Female children whose mothers were randomized to IPTp-DP4w had an apparently 4-fold higher incidence of malaria compared to female children whose mothers were randomized to IPTp-SP8w (0.65 versus 0.20 episodes PPY, aIRR 4.39, 95% CI 1.87-10.3, p = 0.001), but no significant association was observed in male children (0.20 versus 0.28 episodes PPY, aIRR 0.66, 95% CI 0.25-1.75, p = 0.42). Nonsignificant increases in malaria incidence were observed among female, but not male, children born to mothers who received DP8w versus SP8w. In exploratory analyses, levels of malaria-specific antibodies in cord blood were similar between IPTp groups and sex. However, female children whose mothers were randomized to IPTp-DP4w had lower mean piperaquine (PQ) levels during infancy compared to female children whose mothers received IPTp-SP8w (coef 0.81, 95% CI 0.65-1.00, p = 0.048) and male children whose mothers received IPTp-DP4w (coef 0.72, 95% CI 0.57-0.91, p = 0.006). There were no significant sex-specific differences in PQ levels among children whose mothers were randomized to IPTp-SP8w or IPTp-DP8w. The main limitations were small sample size and childhood provision of DP every 12 weeks in infancy. CONCLUSIONS: Contrary to our hypothesis, preventing malaria in pregnancy with IPTp-DP in the context of chemoprevention with DP during infancy does not lead to a reduced incidence of malaria in childhood; in this setting, it may be associated with an increased incidence of malaria in females. Future studies are needed to better understand the biological mechanisms of in utero drug exposure on drug metabolism and how this may affect the dosing of antimalarial drugs for treatment and prevention during infancy. TRIAL REGISTRATION: ClinicalTrials.gov number NCT02163447.


Assuntos
Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Malária Falciparum/prevenção & controle , Complicações Parasitárias na Gravidez/prevenção & controle , Pirimetamina/administração & dosagem , Quinolinas/administração & dosagem , Sulfadoxina/administração & dosagem , Adolescente , Adulto , Antimaláricos/efeitos adversos , Artemisininas/efeitos adversos , Pré-Escolar , Método Duplo-Cego , Esquema de Medicação , Combinação de Medicamentos , Feminino , Humanos , Incidência , Lactente , Recém-Nascido , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Gravidez , Complicações Parasitárias na Gravidez/epidemiologia , Complicações Parasitárias na Gravidez/parasitologia , Pirimetamina/efeitos adversos , Quinolinas/efeitos adversos , Sulfadoxina/efeitos adversos , Fatores de Tempo , Resultado do Tratamento , Uganda/epidemiologia , Adulto Jovem
2.
Mol Microbiol ; 76(5): 1175-90, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20345655

RESUMO

We identified a Leishmania major-specific gene that can partly compensate for the loss of virulence observed for L. major HSP100 null mutants. The gene, encoding a 46 kD protein of unknown function and lineage, also enhances the virulence of wild type L. major upon overexpression. Surprisingly, the approximately sixfold overexpression of this protein also extends the host range of L. major to normally resistant C57BL/6 mice, causing persisting lesions in this strain, even while eliciting a strong cellular immune response. This enhanced virulence in vivo is mirrored in vitro by increased parasite burden inside bone marrow-derived macrophages. The localization of the protein in the macrophage cytoplasm suggests that it may modulate the macrophage effector mechanisms. In summary, our data show that even minor changes of gene expression in L. major may alter the outcome of an infection, regardless of the host's genetic predisposition.


Assuntos
Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Leishmania major/genética , Leishmania major/patogenicidade , Proteínas de Protozoários/genética , Animais , Citocinas/imunologia , Endopeptidase Clp , Feminino , Teste de Complementação Genética , Proteínas de Choque Térmico/metabolismo , Humanos , Leishmania major/citologia , Leishmania major/imunologia , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fases de Leitura Aberta , Proteínas de Protozoários/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA