Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 2(7): 100352, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34337567

RESUMO

Epstein-Barr virus (EBV) and related lymphocryptoviruses (LCVs) from nonhuman primates are transmitted through oral secretions, penetrate the mucosal epithelium, and establish persistent infection in B cells. To determine whether neutralizing antibodies against epithelial or B cell infection could block oral transmission and persistent LCV infection, we use rhesus macaques, the most accurate animal model for EBV infection by faithfully reproducing acute and persistent infection in humans. Naive animals are infused with monoclonal antibodies neutralizing epithelial cell infection or B cell infection and then challenged orally with recombinant rhesus LCV. Our data show that high-titer B cell-neutralizing antibodies alone, but not epithelial cell-neutralizing antibodies, can provide complete protection of rhesus macaques from oral LCV challenge, but not in all hosts. Thus, neutralizing antibodies against B cell infection are important targets for EBV vaccine development, but they may not be sufficient.


Assuntos
Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Linfócitos B/virologia , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/prevenção & controle , Herpesvirus Humano 4/imunologia , Administração Oral , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Infecções por Vírus Epstein-Barr/sangue , Lymphocryptovirus/imunologia , Macaca mulatta
2.
Am J Transplant ; 20(1): 298-305, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31430418

RESUMO

The antagonistic anti-CD40 antibody, 2C10, and its recombinant primate derivative, 2C10R4, are potent immunosuppressive antibodies whose utility in allo- and xenotransplantation have been demonstrated in nonhuman primate studies. In this study, we defined the 2C10 binding epitope and found only slight differences in affinity of 2C10 for CD40 derived from four primate species. Staining of truncation mutants mapped the 2C10 binding epitope to the N-terminal portion of CD40. Alanine scanning mutagenesis of the first 60 residues in the CD40 ectodomain highlighted key amino acids important for binding of 2C10 and for binding of the noncross-blocking anti-CD40 antibodies 3A8 and 5D12. All four 2C10-binding residues defined by mutagenesis clustered near the membrane-distal tip of CD40 and partially overlap the CD154 binding surface. In contrast, the overlapping 3A8 and 5D12 epitopes map to an opposing surface away from the CD154 binding domain. This biochemical characterization of 2C10 confirms the validity of nonhuman primate studies in the translation of this therapeutic antibody and provides insight its mechanism of action.


Assuntos
Anticorpos Monoclonais/metabolismo , Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Epitopos/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Antígenos CD40/química , Antígenos CD40/genética , Antígenos CD40/imunologia , Ligante de CD40/química , Ligante de CD40/genética , Ligante de CD40/imunologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Humanos , Macaca mulatta , Mutação , Conformação Proteica , Homologia de Sequência de Aminoácidos
3.
J Immunol ; 204(3): 644-659, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31862711

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis, continues to be a major global health problem. Lung granulomas are organized structures of host immune cells that function to contain the bacteria. Cytokine expression is a critical component of the protective immune response, but inappropriate cytokine expression can exacerbate TB. Although the importance of proinflammatory cytokines in controlling M. tuberculosis infection has been established, the effects of anti-inflammatory cytokines, such as IL-10, in TB are less well understood. To investigate the role of IL-10, we used an Ab to neutralize IL-10 in cynomolgus macaques during M. tuberculosis infection. Anti-IL-10-treated nonhuman primates had similar overall disease outcomes compared with untreated control nonhuman primates, but there were immunological changes in granulomas and lymph nodes from anti-IL-10-treated animals. There was less thoracic inflammation and increased cytokine production in lung granulomas and lymph nodes from IL-10-neutralized animals at 3-4 wk postinfection compared with control animals. At 8 wk postinfection, lung granulomas from IL-10-neutralized animals had reduced cytokine production but increased fibrosis relative to control animals. Although these immunological changes did not affect the overall disease burden during the first 8 wk of infection, we paired computational modeling to explore late infection dynamics. Our findings support that early changes occurring in the absence of IL-10 may lead to better bacterial control later during infection. These unique datasets provide insight into the contribution of IL-10 to the immunological balance necessary for granulomas to control bacterial burden and disease pathology in M. tuberculosis infection.


Assuntos
Granuloma/imunologia , Inflamação/imunologia , Interleucina-10/metabolismo , Pulmão/patologia , Linfonodos/imunologia , Mycobacterium tuberculosis/fisiologia , Tuberculose/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Humanos , Imunidade , Pulmão/imunologia , Macaca fascicularis , Fibrose Pulmonar
4.
Science ; 365(6457): 1033-1036, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31488690

RESUMO

A study in nonhuman primates reported that infusions of an antibody against α4ß7 integrin, in combination with antiretroviral therapy, showed consistent, durable control of simian immunodeficiency virus (SIV) in rhesus macaques. The antibody used has pleiotropic effects, so we set out to gain insight into the underlying mechanism by comparing this treatment to treatment with non-neutralizing monoclonal antibodies against the SIV envelope glycoprotein that only block α4ß7 binding to SIV Env but have no other host-directed effects. Similar to the initial study, we used an attenuated strain of SIV containing a stop codon in nef. The study used 30 macaques that all began antiretroviral therapy and then were divided into five groups to receive different antibody treatments. Unlike the published report, we found no sustained virologic control by these treatments in vivo.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Integrina alfa4/imunologia , Cadeias beta de Integrinas/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Antivirais/administração & dosagem , DNA Viral/sangue , Produtos do Gene env/imunologia , Infecções por HIV/terapia , Macaca mulatta , RNA Viral/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/fisiologia , Linfócitos T/imunologia , Carga Viral , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/imunologia , Replicação Viral
5.
Nat Commun ; 7: 11138, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27045379

RESUMO

Preventing xenograft rejection is one of the greatest challenges of transplantation medicine. Here, we describe a reproducible, long-term survival of cardiac xenografts from alpha 1-3 galactosyltransferase gene knockout pigs, which express human complement regulatory protein CD46 and human thrombomodulin (GTKO.hCD46.hTBM), that were transplanted into baboons. Our immunomodulatory drug regimen includes induction with anti-thymocyte globulin and αCD20 antibody, followed by maintenance with mycophenolate mofetil and an intensively dosed αCD40 (2C10R4) antibody. Median (298 days) and longest (945 days) graft survival in five consecutive recipients using this regimen is significantly prolonged over our recently established survival benchmarks (180 and 500 days, respectively). Remarkably, the reduction of αCD40 antibody dose on day 100 or after 1 year resulted in recrudescence of anti-pig antibody and graft failure. In conclusion, genetic modifications (GTKO.hCD46.hTBM) combined with the treatment regimen tested here consistently prevent humoral rejection and systemic coagulation pathway dysregulation, sustaining long-term cardiac xenograft survival beyond 900 days.


Assuntos
Anticorpos/farmacologia , Sobrevivência de Enxerto/efeitos dos fármacos , Transplante de Coração , Fatores Imunológicos/farmacologia , Imunoterapia/métodos , Animais , Animais Geneticamente Modificados , Soro Antilinfocitário/farmacologia , Antígenos CD40/antagonistas & inibidores , Antígenos CD40/genética , Antígenos CD40/imunologia , Feminino , Galactosiltransferases/deficiência , Galactosiltransferases/genética , Galactosiltransferases/imunologia , Expressão Gênica , Humanos , Masculino , Proteína Cofatora de Membrana/genética , Proteína Cofatora de Membrana/imunologia , Ácido Micofenólico/análogos & derivados , Ácido Micofenólico/farmacologia , Papio , Rituximab/farmacologia , Suínos , Trombomodulina/genética , Trombomodulina/imunologia , Transgenes , Transplante Heterólogo
6.
Science ; 351(6277): 1078-83, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26912366

RESUMO

Antibodies targeting the Ebola virus surface glycoprotein (EBOV GP) are implicated in protection against lethal disease, but the characteristics of the human antibody response to EBOV GP remain poorly understood. We isolated and characterized 349 GP-specific monoclonal antibodies (mAbs) from the peripheral B cells of a convalescent donor who survived the 2014 EBOV Zaire outbreak. Remarkably, 77% of the mAbs neutralize live EBOV, and several mAbs exhibit unprecedented potency. Structures of selected mAbs in complex with GP reveal a site of vulnerability located in the GP stalk region proximal to the viral membrane. Neutralizing antibodies targeting this site show potent therapeutic efficacy against lethal EBOV challenge in mice. The results provide a framework for the design of new EBOV vaccine candidates and immunotherapies.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/uso terapêutico , Formação de Anticorpos , Complexo Antígeno-Anticorpo/química , República Democrática do Congo/epidemiologia , Surtos de Doenças , Vacinas contra Ebola/imunologia , Vacinas contra Ebola/uso terapêutico , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/terapia , Humanos , Imunização Passiva , Camundongos , Sobreviventes , Doadores de Tecidos , Proteínas do Envelope Viral/química , Vírion/imunologia
7.
Xenotransplantation ; 21(1): 35-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24164510

RESUMO

BACKGROUND: Recently, we have shown that an immunosuppression regimen including costimulation blockade via anti-CD154 antibody significantly prolongs the cardiac xenograft survival in a GTKO.hCD46Tg pig-to-baboon heterotopic xenotransplantation model. Unfortunately, many coagulation disorders were observed with the use of anti-CD154 antibody, and recipient survival was markedly reduced by these complications. MATERIAL AND METHODS: In this experiment, we replaced anti-CD154 antibody with a more clinically acceptable anti-CD40 antibody while keeping the rest of the immunosuppressive regimen and the donor pig genetics the same. This was carried out to evaluate the antibody's role in xenograft survival and prevention of coagulopathies. Two available clones of anti-CD40 antibody were tested. One mouse anti-human CD40 antibody, (clone 3A8), activated B lymphocytes in vitro and only modestly suppressed antibody production in vivo. Whereas a recombinant mouse non-human primate chimeric raised against macaque CD40, (clone 2C10R4), blocked B-cell activation in vitro and completely blocked antibody production in vivo. RESULTS: The thrombotic complications seen with anti-CD154 antibody were effectively avoided but the graft survival, although extended, was not as prolonged as observed with anti-CD154 antibody treatment. The longest survival for the 3A8 antibody group was 27 days, and the longest graft survival in the 2C10R4 antibody group was 146 days. All of the grafts except two rejected and were explanted. Only two recipient baboons had to be euthanized due to unrelated complications, and the rest of the baboons remained healthy throughout the graft survival period or after graft explantation. In contrast to our anti-CD 154 antibody-treated baboons, the non-Gal antibody levels started to rise after B cells made their appearance around 8 weeks post-transplantation. CONCLUSIONS: Anti-CD40 antibody at the current dose does not induce any coagulopathies but while effective, had reduced efficacy to induce similar long-term graft survival as with anti-CD154 antibody perhaps due to ineffective control of B-cell function and antibody production at the present dose. More experiments are required to determine antibody affinity and effective dose for inducing long-term cardiac xenograft survival.


Assuntos
Anticorpos/imunologia , Antígenos CD40/imunologia , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/imunologia , Animais , Animais Geneticamente Modificados , Formação de Anticorpos , Linfócitos B/imunologia , Ligante de CD40/imunologia , Rejeição de Enxerto/prevenção & controle , Xenoenxertos , Imunossupressores/farmacologia , Papio , Sus scrofa , Suínos , Transplante Heterólogo/métodos
8.
Nat Med ; 17(9): 1128-31, 2011 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-21857654

RESUMO

Vaccine-induced immunity to Ebola virus infection in nonhuman primates (NHPs) is marked by potent antigen-specific cellular and humoral immune responses; however, the immune mechanism of protection remains unknown. Here we define the immune basis of protection conferred by a highly protective recombinant adenovirus virus serotype 5 (rAd5) encoding Ebola virus glycoprotein (GP) in NHPs. Passive transfer of high-titer polyclonal antibodies from vaccinated Ebola virus-immune cynomolgus macaques to naive macaques failed to confer protection against disease, suggesting a limited role of humoral immunity. In contrast, depletion of CD3(+) T cells in vivo after vaccination and immediately before challenge eliminated immunity in two vaccinated macaques, indicating a crucial requirement for T cells in this setting. The protective effect was mediated largely by CD8(+) cells, as depletion of CD8(+) cells in vivo using the cM-T807 monoclonal antibody (mAb), which does not affect CD4(+) T cell or humoral immune responses, abrogated protection in four out of five subjects. These findings indicate that CD8(+) cells have a major role in rAd5-GP-induced immune protection against Ebola virus infection in NHPs. Understanding the immunologic mechanism of Ebola virus protection will facilitate the development of vaccines for Ebola and related hemorrhagic fever viruses in humans.


Assuntos
Adenoviridae/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas contra Ebola/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Complexo CD3/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Imuno-Histoquímica , Macaca fascicularis , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas do Envelope Viral/imunologia
9.
J Virol ; 82(19): 9629-38, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18667509

RESUMO

Adaptive CD4(+) and CD8(+) T-cell responses have been associated with control of human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) replication. Here, we have designed a study with Indian rhesus macaques to more directly assess the role of CD8 SIV-specific responses in control of viral replication. Macaques were immunized with a DNA prime-modified vaccinia virus Ankara (MVA)-SIV boost regimen under normal conditions or under conditions of antibody-induced CD4(+) T-cell deficiency. Depletion of CD4(+) cells was performed in the immunized macaques at the peak of SIV-specific CD4(+) T-cell responses following the DNA prime dose. A group of naïve macaques was also treated with the anti-CD4 depleting antibody as a control, and an additional group of macaques immunized under normal conditions was depleted of CD8(+) T cells prior to challenge exposure to SIV(mac251). Analysis of the quality and quantity of vaccine-induced CD8(+) T cells demonstrated that SIV-specific CD8(+) T cells generated under conditions of CD4(+) T-cell deficiency expressed low levels of Bcl-2 and interleukin-2 (IL-2), and plasma virus levels increased over time. Depletion of CD8(+) T cells prior to challenge exposure abrogated vaccine-induced protection as previously shown. These data support the notion that adaptive CD4(+) T cells are critical for the generation of effective CD8(+) T-cell responses to SIV that, in turn, contribute to protection from AIDS. Importantly, they also suggest that long-term protection from disease will be afforded only by T-cell vaccines for HIV that provide a balanced induction of CD4(+) and CD8(+) T-cell responses and protect against early depletion of CD4(+) T cells postinfection.


Assuntos
Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/virologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/metabolismo , Animais , Proliferação de Células , Interleucina-2/biossíntese , Antígeno Ki-67/biossíntese , Linfócitos/metabolismo , Macaca mulatta , Fenótipo , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Vírus da Imunodeficiência Símia/genética , Linfócitos T/citologia , Vacinação
10.
Immunology ; 124(2): 215-22, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18201184

RESUMO

Non-human primates serve as key animal models for a variety of viral infections. To evaluate the contribution of natural killer (NK) cells to the immune-mediated control of these viruses in macaque monkeys, we have described a method for depleting NK cells in vivo by administration of anti-human CD16 mouse monoclonal antibody. Using a fluorometric NK-cell cytotoxicity assay, we show that most NK-cell cytotoxicity in rhesus monkey peripheral blood mononuclear cells resides in the CD16(+) and/or CD159A(+) subset of lymphocytes. The anti-human CD16 antibody, 3G8, binds to subsets of rhesus monkey lymphocytes and monocytes but not to neutrophils. Intravenous administration of 10-50 mg/kg of 3G8 to normal rhesus monkeys resulted in anti-CD16 antibody persistence in the plasma for 1-3 weeks. This treatment also depleted 80-90% of CD3(-) CD159A(+) lymphocytes, putative NK cells, from blood for at least 1 week and was associated with the loss of NK-cell cytotoxicity when evaluated by in vitro assays. Using this method, transient depletion of NK cells from two rhesus monkeys chronically infected with simian immunodeficiency virus failed to cause changes in virus replication. These studies describe a non-human primate model for in vivo NK-cell depletion and suggest a limited role for cytotoxic CD16(+) NK cells in controlling AIDS virus replication during chronic infection.


Assuntos
Anticorpos Monoclonais/imunologia , Modelos Animais de Doenças , Células Matadoras Naturais/imunologia , Depleção Linfocítica/métodos , Receptores de IgG/imunologia , Animais , Citotoxicidade Imunológica , Fluorometria , Imunofenotipagem , Subpopulações de Linfócitos/imunologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Replicação Viral
11.
J Virol ; 79(14): 8878-85, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15994781

RESUMO

Because most studies of AIDS pathogenesis in nonhuman primates have been performed in Indian-origin rhesus macaques (Macaca mulatta), little is known about lentiviral pathogenicity and control of virus replication following infection of alternative macaque species. Here, we report the consequences of simian-human immunodeficiency virus SHIV-89.6P and SIVmac251 infection in cynomolgus (Macaca fascicularis) and rhesus macaques of Chinese origin. Compared to the pathogenicity of the same viruses in Indian rhesus macaques, both cynomolgus and Chinese rhesus macaques showed lower levels of plasma virus. By 9 to 10 months after infection, both viruses became undetectable in plasma more frequently in cynomolgus than in either Chinese or Indian rhesus macaques. Furthermore, after SHIV-89.6P infection, CD4+ T-cell numbers declined less and survival was longer in cynomolgus and Chinese rhesus macaques than in Indian rhesus macaques. This attenuated pathogenicity was associated with gamma interferon ELISPOT responses to Gag and Env that were generated earlier and of higher frequency in cynomolgus than in Indian rhesus macaques. Cynomolgus macaques also developed higher titer neutralizing antibodies against SHIV-89.6 at 10 and 20 weeks postinoculation than Indian rhesus macaques. These studies demonstrate that the pathogenicity of nonhuman primate lentiviruses varies markedly based on the species or geographic origin of the macaques infected and suggest that the cellular immune responses may contribute to the control of pathogenicity in cynomolgus macaques. While cynomolgus and Chinese rhesus macaques provide alternative animal models of lentiviral infection, the lower levels of viremia in cynomolgus macaques limit the usefulness of infection of this species for vaccine trials that utilize viral load as an experimental endpoint.


Assuntos
HIV/patogenicidade , Macaca fascicularis/virologia , Macaca mulatta/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Linfócitos T/imunologia , Animais , Contagem de Linfócito CD4 , HIV/imunologia , Anticorpos Anti-HIV/sangue , Macaca fascicularis/imunologia , Macaca mulatta/imunologia , Vírus da Imunodeficiência Símia/imunologia , Especificidade da Espécie , Carga Viral , Viremia/virologia
12.
J Virol ; 79(13): 8131-41, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15956558

RESUMO

Although live attenuated vaccines can provide potent protection against simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus challenges, the specific immune responses that confer this protection have not been determined. To test whether cellular immune responses mediated by CD8+ lymphocytes contribute to this vaccine-induced protection, we depleted rhesus macaques vaccinated with the live attenuated virus SIVmac239Delta3 of CD8+ lymphocytes and then challenged them with SIVmac251 by the intravenous route. While vaccination did not prevent infection with the pathogenic challenge virus, the postchallenge levels of virus in the plasmas of vaccinated control animals were significantly lower than those for unvaccinated animals. The depletion of CD8+ lymphocytes at the time of challenge resulted in virus levels in the plasma that were intermediate between those of the vaccinated and unvaccinated controls, suggesting that CD8+ cell-mediated immune responses contributed to protection. Interestingly, at the time of challenge, animals expressing the Mamu-A*01 major histocompatibility complex class I allele showed significantly higher frequencies of SIV-specific CD8+ T-cell responses and lower neutralizing antibody titers than those in Mamu-A*01- animals. Consistent with these findings, the depletion of CD8+ lymphocytes abrogated vaccine-induced protection, as judged by the peak postchallenge viremia, to a greater extent in Mamu-A*01+ than in Mamu-A*01- animals. The partial control of postchallenge viremia after CD8+ lymphocyte depletion suggests that both humoral and cellular immune responses induced by live attenuated SIV vaccines can contribute to protection against a pathogenic challenge and that the relative contribution of each of these responses to protection may be genetically determined.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Produtos do Gene env/imunologia , Depleção Linfocítica , Proteínas Oncogênicas de Retroviridae/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/patogenicidade , Proteínas Virais de Fusão/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Antivirais/sangue , Imunofenotipagem , Macaca mulatta , Deleção de Sequência , Vírus da Imunodeficiência Símia/fisiologia , Vacinas Virais , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia
13.
J Neurovirol ; 10 Suppl 1: 58-66, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14982741

RESUMO

The duration and severity of the symptomatology present during the early phase of human immunodeficiency virus (HIV) infection (known as the acute retroviral syndrome) is associated with alterations in the clinical profile of infection, such as a shortening of duration between infection with HIV and the onset of neurocognitive impairment and acquired immunodeficiency syndrome (AIDS). Viral-specific CD8+ cytotoxic T lymphocytes (CTLs) and CD8+ natural killer (NK) cells play a key role in antiviral immunity. Loss of CD8+ cells or their functional impairment during the early period of infection is associated with a rapid progression to AIDS in nonhuman primate studies. However, no studies have determined whether CD8+ cell loss or impairment is associated with symptoms of acute retroviral illness such as fever. In this study, the authors compared the early phase of simian immunodeficiency virus (SIV) infection in animals that were treated with the anti-CD8 monoclonal antibody cM-T807 to deplete CD8+ cells during the early period of infection (SIV+ CD8- group) to those with intact CD8+ cells (SIV+ CD8+ group). The SIV+ CD8- group had an enhanced acute retroviral syndrome when compared to the SIV+ CD8+ group. The SIV+ CD8- group also had prolonged high viral loads and distinct alterations in the proinflammatory cytokines interleukin (IL)-6 and interferon (IFN)-alpha, as well as in monocyte chemoattractant protein (MCP)-1. CD8+ cell depletion, therefore, appears to enhance symptoms of the acute retroviral syndrome and alters several of the immunological factors associated with the early phase of infection.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/fisiopatologia , Doença Aguda , Animais , Quimiocina CCL2/sangue , Febre/imunologia , Febre/mortalidade , Febre/virologia , Interferon-alfa/sangue , Interleucina-6/sangue , Macaca mulatta , Masculino , Atividade Motora , Síndrome de Imunodeficiência Adquirida dos Símios/mortalidade , Análise de Sobrevida , Carga Viral
14.
AIDS ; 16(6): 829-38, 2002 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-11919484

RESUMO

OBJECTIVE: To directly examine the role of CD8+ T cells in controlling viremia and disease during chronic, low-level primate immunodeficiency virus infection in DNA prime/protein boost-vaccinated macaques. BACKGROUND: A cohort of macaques, vaccinated with either a DNA prime/HIV-1 gp160 boost regimen or with gp160 alone was previously protected partially from sequential challenges with non-pathogenic and pathogenic strains of chimeric simian/human immunodeficiency virus (SHIV). In this study, the effect of temporary ablation of CD8+ T cells in these animals was examined. METHODS: Animals were treated with an anti-CD8 antibody and CD8+ T-cell levels in peripheral blood, plasma viral loads, peripheral blood mononuclear cell-associated virus levels, neutralizing antibody (nAb) titers and simian immunodeficiency virus Gag-specific CD8+ T-cell numbers were followed. RESULTS: Plasma viremia rose sharply in direct synchrony with a rapid but transient drop in CD8+ T cells. However, although levels of cell-associated virus also rose concomitantly, peak levels were much lower than those in virus-challenged, naive animals. In addition, despite a rise of pathogenic SHIV89.6P RNA levels in three animals, CD4+ T-cell counts remained unchanged. In each of these animals, neutralizing antibody titers against the pathogenic SHIV89.6P strain were high. CONCLUSIONS: The results indicate that CD8+ T cells play a key role in suppressing viremia in a chronically infected host. In addition, the results suggest that in the absence of CD8+ T cells, nAb may act as an effective second line of defense by limiting both the spread of infectious virus to new target cells and CD4+ T-cell loss.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , Animais , Sequência de Bases , Quimera , Primers do DNA , Modelos Animais de Doenças , HIV/imunologia , Infecções por HIV/virologia , Depleção Linfocítica , Macaca mulatta , Testes de Neutralização , Vírus da Imunodeficiência Símia/imunologia , Viremia/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA