Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 80(2): 268-281, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37939855

RESUMO

BACKGROUND & AIMS: Cholemic nephropathy (CN) is a severe complication of cholestatic liver diseases for which there is no specific treatment. We revisited its pathophysiology with the aim of identifying novel therapeutic strategies. METHODS: Cholestasis was induced by bile duct ligation (BDL) in mice. Bile flux in kidneys and livers was visualized by intravital imaging, supported by MALDI mass spectrometry imaging and liquid chromatography-tandem mass spectrometry. The effect of AS0369, a systemically bioavailable apical sodium-dependent bile acid transporter (ASBT) inhibitor, was evaluated by intravital imaging, RNA-sequencing, histological, blood, and urine analyses. Translational relevance was assessed in kidney biopsies from patients with CN, mice with a humanized bile acid (BA) spectrum, and via analysis of serum BAs and KIM-1 (kidney injury molecule 1) in patients with liver disease and hyperbilirubinemia. RESULTS: Proximal tubular epithelial cells (TECs) reabsorbed and enriched BAs, leading to oxidative stress and death of proximal TECs, casts in distal tubules and collecting ducts, peritubular capillary leakiness, and glomerular cysts. Renal ASBT inhibition by AS0369 blocked BA uptake into TECs and prevented kidney injury up to 6 weeks after BDL. Similar results were obtained in mice with humanized BA composition. In patients with advanced liver disease, serum BAs were the main determinant of KIM-1 levels. ASBT expression in TECs was preserved in biopsies from patients with CN, further highlighting the translational potential of targeting ASBT to treat CN. CONCLUSIONS: BA enrichment in proximal TECs followed by oxidative stress and cell death is a key early event in CN. Inhibiting renal ASBT and consequently BA enrichment in TECs prevents CN and systemically decreases BA concentrations. IMPACT AND IMPLICATIONS: Cholemic nephropathy (CN) is a severe complication of cholestasis and an unmet clinical need. We demonstrate that CN is triggered by the renal accumulation of bile acids (BAs) that are considerably increased in the systemic blood. Specifically, the proximal tubular epithelial cells of the kidney take up BAs via the apical sodium-dependent bile acid transporter (ASBT). We developed a therapeutic compound that blocks ASBT in the kidneys, prevents BA overload in tubular epithelial cells, and almost completely abolished all disease hallmarks in a CN mouse model. Renal ASBT inhibition represents a potential therapeutic strategy for patients with CN.


Assuntos
Proteínas de Transporte , Colestase , Nefropatias , Hepatopatias , Glicoproteínas de Membrana , Transportadores de Ânions Orgânicos Dependentes de Sódio , Simportadores , Humanos , Camundongos , Animais , Colestase/complicações , Colestase/metabolismo , Rim/metabolismo , Simportadores/metabolismo , Ácidos e Sais Biliares/metabolismo , Fígado/metabolismo , Ductos Biliares/metabolismo , Hepatopatias/metabolismo , Sódio
2.
J Hepatol ; 77(1): 71-83, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35131407

RESUMO

BACKGROUND & AIMS: Acetaminophen (APAP) overdose remains a frequent cause of acute liver failure, which is generally accompanied by increased levels of serum bile acids (BAs). However, the pathophysiological role of BAs remains elusive. Herein, we investigated the role of BAs in APAP-induced hepatotoxicity. METHODS: We performed intravital imaging to investigate BA transport in mice, quantified endogenous BA concentrations in the serum of mice and patients with APAP overdose, analyzed liver tissue and bile by mass spectrometry and MALDI-mass spectrometry imaging, assessed the integrity of the blood-bile barrier and the role of oxidative stress by immunostaining of tight junction proteins and intravital imaging of fluorescent markers, identified the intracellular cytotoxic concentrations of BAs, and performed interventions to block BA uptake from blood into hepatocytes. RESULTS: Prior to the onset of cell death, APAP overdose causes massive oxidative stress in the pericentral lobular zone, which coincided with a breach of the blood-bile barrier. Consequently, BAs leak from the bile canaliculi into the sinusoidal blood, which is then followed by their uptake into hepatocytes via the basolateral membrane, their secretion into canaliculi and repeated cycling. This, what we termed 'futile cycling' of BAs, led to increased intracellular BA concentrations that were high enough to cause hepatocyte death. Importantly, however, the interruption of BA re-uptake by pharmacological NTCP blockage using Myrcludex B and Oatp knockout strongly reduced APAP-induced hepatotoxicity. CONCLUSIONS: APAP overdose induces a breach of the blood-bile barrier which leads to futile BA cycling that causes hepatocyte death. Prevention of BA cycling may represent a therapeutic option after APAP intoxication. LAY SUMMARY: Only one drug, N-acetylcysteine, is approved for the treatment of acetaminophen overdose and it is only effective when given within ∼8 hours after ingestion. We identified a mechanism by which acetaminophen overdose causes an increase in bile acid concentrations (to above toxic thresholds) in hepatocytes. Blocking this mechanism prevented acetaminophen-induced hepatotoxicity in mice and evidence from patients suggests that this therapy may be effective for longer periods after ingestion compared to N-acetylcysteine.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Overdose de Drogas , Acetaminofen/metabolismo , Acetilcisteína/farmacologia , Animais , Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
3.
Sci Rep ; 9(1): 7436, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092874

RESUMO

D-2-Hydroxyglutarate (D-2-HG) is regarded as an oncometabolite. It is found at elevated levels in certain malignancies such as acute myeloid leukaemia and glioma. It is produced by a mutated isocitrate dehydrogenase IDH1/2, a low-affinity/high-capacity enzyme. Its degradation, in contrast, is catalysed by the high-affinity/low-capacity enzyme D-2-hydroxyglutarate dehydrogenase (D2HDH). So far, it has not been proven experimentally that the accumulation of D-2-HG in IDH mutant cells is the result of its insufficient degradation by D2HDH. Therefore, we developed an LC-MS/MS-based enzyme activity assay that measures the temporal drop in substrate and compared this to the expression of D2HDH protein as measured by Western blot. Our data clearly indicate, that the maximum D-2-HG degradation rate by D2HDH is reached in vivo, as vmax is low in comparison to production of D-2-HG by mutant IDH1/2. The latter seems to be limited only by substrate availability. Further, incubation of IDH wild type cells for up to 48 hours with 5 mM D-2-HG did not result in a significant increase in either D2HDH protein abundance or enzyme activity.


Assuntos
Glutaratos/metabolismo , Isocitrato Desidrogenase/genética , Mutação , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Glioma/patologia , Glutaratos/química , Células HCT116 , Humanos , Isocitrato Desidrogenase/metabolismo , Células MCF-7 , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/metabolismo , Espectrometria de Massas em Tandem/métodos
4.
J Am Soc Nephrol ; 29(7): 1849-1858, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29654216

RESUMO

Background For many patients with kidney failure, the cause and underlying defect remain unknown. Here, we describe a novel mechanism of a genetic order characterized by renal Fanconi syndrome and kidney failure.Methods We clinically and genetically characterized members of five families with autosomal dominant renal Fanconi syndrome and kidney failure. We performed genome-wide linkage analysis, sequencing, and expression studies in kidney biopsy specimens and renal cells along with knockout mouse studies and evaluations of mitochondrial morphology and function. Structural studies examined the effects of recognized mutations.Results The renal disease in these patients resulted from monoallelic mutations in the gene encoding glycine amidinotransferase (GATM), a renal proximal tubular enzyme in the creatine biosynthetic pathway that is otherwise associated with a recessive disorder of creatine deficiency. In silico analysis showed that the particular GATM mutations, identified in 28 members of the five families, create an additional interaction interface within the GATM protein and likely cause the linear aggregation of GATM observed in patient biopsy specimens and cultured proximal tubule cells. GATM aggregates-containing mitochondria were elongated and associated with increased ROS production, activation of the NLRP3 inflammasome, enhanced expression of the profibrotic cytokine IL-18, and increased cell death.Conclusions In this novel genetic disorder, fully penetrant heterozygous missense mutations in GATM trigger intramitochondrial fibrillary deposition of GATM and lead to elongated and abnormal mitochondria. We speculate that this renal proximal tubular mitochondrial pathology initiates a response from the inflammasome, with subsequent development of kidney fibrosis.


Assuntos
Amidinotransferases/genética , Síndrome de Fanconi/genética , Falência Renal Crônica/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Idoso , Amidinotransferases/metabolismo , Animais , Simulação por Computador , Síndrome de Fanconi/complicações , Síndrome de Fanconi/metabolismo , Síndrome de Fanconi/patologia , Feminino , Heterozigoto , Humanos , Lactente , Inflamassomos/metabolismo , Falência Renal Crônica/etiologia , Falência Renal Crônica/metabolismo , Falência Renal Crônica/patologia , Masculino , Camundongos , Camundongos Knockout , Conformação Molecular , Mutação , Mutação de Sentido Incorreto , Linhagem , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de DNA , Adulto Jovem
5.
Cell Rep ; 15(7): 1423-1429, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27160910

RESUMO

We recently reported an autosomal dominant form of renal Fanconi syndrome caused by a missense mutation in the third codon of the peroxisomal protein EHHADH. The mutation mistargets EHHADH to mitochondria, thereby impairing mitochondrial energy production and, consequently, reabsorption of electrolytes and low-molecular-weight nutrients in the proximal tubule. Here, we further elucidate the molecular mechanism underlying this pathology. We find that mutated EHHADH is incorporated into mitochondrial trifunctional protein (MTP), thereby disturbing ß-oxidation of long-chain fatty acids. The resulting MTP deficiency leads to a characteristic accumulation of hydroxyacyl- and acylcarnitines. Mutated EHHADH also limits respiratory complex I and corresponding supercomplex formation, leading to decreases in oxidative phosphorylation capacity, mitochondrial membrane potential maintenance, and ATP generation. Activity of the Na(+)/K(+)-ATPase is thereby diminished, ultimately decreasing the transport activity of the proximal tubule cells.


Assuntos
Síndrome de Fanconi/metabolismo , Rim/metabolismo , Rim/patologia , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Animais , Transporte Biológico , Extratos Celulares , Metabolismo Energético , Síndrome de Fanconi/complicações , Síndrome de Fanconi/patologia , Ácidos Graxos/metabolismo , Células LLC-PK1 , Microscopia Confocal , Doenças Mitocondriais/complicações , Doenças Mitocondriais/patologia , Mutação/genética , Oxirredução , Enzima Bifuncional do Peroxissomo/metabolismo , Proteômica , ATPase Trocadora de Sódio-Potássio/metabolismo , Frações Subcelulares/metabolismo , Suínos
6.
PLoS One ; 9(1): e86777, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24466237

RESUMO

Collagen XVI belongs to the family of fibril-associated collagens with interrupted triple helices (FACIT). It is overexpressed during the progression of oral squamous cell carcinoma (OSCC). The present data show a strong collagen XVI-dependent induction of MMP9 and an increase in OSCC cell invasion. We found activated integrin-linked kinase (ILK) in a complex with kindlin-1 and activation of protein kinase B (PKB/Akt) to be responsible for MMP9 induction. Inhibition of the formation of focal adhesions reduced MMP9 expression. Moreover, collagen XVI overexpressing OSCC cell clones (COLXVI cell clones) transfected with vectors containing different MMP9 promoter fragments adjacent to a luciferase reporter revealed an increase in luciferase signal dependent on AP-1 binding sites. Deletion of the AP-1 binding site 98 bp upstream of the reported transcription start site and inhibition of AP-1 with Tanshinone IIA resulted in decreased MMP9 expression. The AP-1 subunit JunB showed differential expression between COLXVI cell clones and mock control cells. Additionally, mass spectrometric analysis of immunoprecipitates revealed that c-Fos interacted strongly with dyskerin in COLXVI cell clones compared to mock controls.


Assuntos
Carcinoma de Células Escamosas/patologia , Movimento Celular , Colágeno/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Bucais/patologia , Fator de Transcrição AP-1/metabolismo , Apoptose , Western Blotting , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Adesão Celular , Proliferação de Células , Colágeno/genética , Humanos , Imunoprecipitação , Metaloproteinase 9 da Matriz/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fator de Transcrição AP-1/genética , Células Tumorais Cultivadas
7.
N Engl J Med ; 370(2): 129-38, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24401050

RESUMO

BACKGROUND: In renal Fanconi's syndrome, dysfunction in proximal tubular cells leads to renal losses of water, electrolytes, and low-molecular-weight nutrients. For most types of isolated Fanconi's syndrome, the genetic cause and underlying defect remain unknown. METHODS: We clinically and genetically characterized members of a five-generation black family with isolated autosomal dominant Fanconi's syndrome. We performed genomewide linkage analysis, gene sequencing, biochemical and cell-biologic investigations of renal proximal tubular cells, studies in knockout mice, and functional evaluations of mitochondria. Urine was studied with the use of proton nuclear magnetic resonance ((1)H-NMR) spectroscopy. RESULTS: We linked the phenotype of this family's Fanconi's syndrome to a single locus on chromosome 3q27, where a heterozygous missense mutation in EHHADH segregated with the disease. The p.E3K mutation created a new mitochondrial targeting motif in the N-terminal portion of EHHADH, an enzyme that is involved in peroxisomal oxidation of fatty acids and is expressed in the proximal tubule. Immunocytofluorescence studies showed mistargeting of the mutant EHHADH to mitochondria. Studies of proximal tubular cells revealed impaired mitochondrial oxidative phosphorylation and defects in the transport of fluids and a glucose analogue across the epithelium. (1)H-NMR spectroscopy showed elevated levels of mitochondrial metabolites in urine from affected family members. Ehhadh knockout mice showed no abnormalities in renal tubular cells, a finding that indicates a dominant negative nature of the mutation rather than haploinsufficiency. CONCLUSIONS: Mistargeting of peroxisomal EHHADH disrupts mitochondrial metabolism and leads to renal Fanconi's syndrome; this indicates a central role of mitochondria in proximal tubular function. The dominant negative effect of the mistargeted protein adds to the spectrum of monogenic mechanisms of Fanconi's syndrome. (Funded by the European Commission Seventh Framework Programme and others.).


Assuntos
Síndrome de Fanconi/genética , Túbulos Renais Proximais/metabolismo , Mitocôndrias/metabolismo , Mutação de Sentido Incorreto , Enzima Bifuncional do Peroxissomo/genética , Sequência de Aminoácidos , Animais , População Negra , Cromossomos Humanos Par 3 , Modelos Animais de Doenças , Síndrome de Fanconi/etnologia , Feminino , Ligação Genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Linhagem , Enzima Bifuncional do Peroxissomo/química , Enzima Bifuncional do Peroxissomo/metabolismo , Fenótipo , Análise de Sequência de DNA
8.
Hum Mutat ; 30(6): 1003-11, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19370760

RESUMO

Cerebral cavernous malformations (CCMs) may cause recurrent headaches, seizures, and hemorrhagic stroke and have been associated with loss-of-function mutations in CCM1/KRIT1, CCM2, and CCM3/programmed cell death 10 (PDCD10). The CCM3/PDCD10 amino acid sequence does not reveal significant homologies to protein domains with known structure. With the help of the only published human in-frame deletion of the CCM3 gene (c.97-?_150+?del), CCM3:p.L33_K50del, we have identified the interaction domain of CCM3 with the oxidant stress response serine/threonine kinase 25 (STK25, YSK1, SOK1) and with the mammalian Ste20-like kinase 4 (MST4, MASK). Consistently, nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) analyses revealed two STK25 phosphorylation sites at serine 39 and threonine 43. The corresponding in-frame deletion of zebrafish ccm3a, dccm3:p.L31_K48del, also resulted in impaired interaction with STK25 and MST4. In agreement with the observed redundant biochemical functionality of zebrafish ccm3a and its duplicate ccm3b, simultaneous inactivation of both genes resulted in a progressive cardiovascular phenotype in zebrafish indistinguishable from ccm1 and ccm2 mutants. The pronounced cardiovascular dilatations could be recapitulated by morpholino-induced in-frame skipping of the exon encoding the STK25 and MST4 binding site of zebrafish Ccm3a if Ccm3b was repressed in parallel. Using a novel zebrafish model of CCM, we could thus demonstrate that the newly mapped STK25 and MST4 interaction domain within the CCM3 protein plays a crucial role for vascular development in zebrafish.


Assuntos
Aminoácidos/genética , Proteínas Reguladoras de Apoptose/genética , Mutação da Fase de Leitura/genética , Proteínas de Membrana/genética , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas/genética , Deleção de Sequência , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Anormalidades Cardiovasculares/embriologia , Anormalidades Cardiovasculares/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Éxons/genética , Técnicas de Silenciamento de Genes , Coração/embriologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína KRIT1 , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fenótipo , Fosforilação , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/química
9.
J Biol Chem ; 284(5): 3183-3194, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-19049963

RESUMO

Mammalian 14-3-3 proteins play a crucial role in the activation process of RAF kinases. However, little is known about the selectivity of the mammalian 14-3-3 isoforms with respect to RAF association and activation. Using mass spectrometry, we analyzed the composition of the 14-3-3 isoforms attached to RAF kinases and found that B-RAF associates in vivo with 14-3-3 at much higher diversity than A- and C-RAF. We also examined in vitro binding of purified mammalian 14-3-3 proteins to RAF kinases using surface plasmon resonance techniques. While B- and C-RAF exhibited binding to all seven 14-3-3 isoforms, A-RAF bound with considerably lower affinities to epsilon, tau, and sigma 14-3-3. These findings indicate that 14-3-3 proteins associate with RAF isoforms in a pronounced isoform-specific manner. Because 14-3-3 proteins appear in dimeric forms, we addressed the question of whether both homo- and heterodimeric forms of 14-3-3 proteins participate in RAF signaling. For that purpose, the budding yeast Saccharomyces cerevisiae, possessing only two 14-3-3 isoforms (BMH1 and BMH2), served as testing system. By deletion of the single BMH2 gene, we found that both homo- and heterodimeric forms of 14-3-3 can participate in RAF activation. Furthermore, we show that A-, B-, and C-RAF activity is differentially regulated by its C-terminal and internal 14-3-3 binding domain. Finally, prohibitin, a scaffold protein that affects C-RAF activation in a stimulatory manner, proved to interfere with the internal 14-3-3 binding site in C-RAF. Together, our results shed more light on the complex mechanism of RAF activation, particularly with respect to activation steps that are mediated by 14-3-3 proteins and prohibitin.


Assuntos
Proteínas 14-3-3/fisiologia , Isoformas de Proteínas/fisiologia , Quinases raf/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Sequência de Bases , Sítios de Ligação , Técnicas Biossensoriais , Primers do DNA , Dimerização , Eletroforese em Gel de Poliacrilamida , Células HeLa , Humanos , Imunoprecipitação , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Espectrometria de Massas em Tandem
10.
Proteomics ; 6(9): 2647-9, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16649167

RESUMO

Detection and identification of phosphorylated amino acid residues is still one of the most challenging tasks in contemporary protein analysis. Especially serine- and threonine-phosphorylation is very often involved in the regulation of enzyme activities and regulates key functions in cellular processes.


Assuntos
Fosfopeptídeos/química , Solventes/química , Cromatografia Líquida , Cisteamina/química , Deutério , Ditiotreitol/química , Compostos Orgânicos/química , Fosfopeptídeos/análise , Fosforilação , Espectrometria de Massas por Ionização por Electrospray
11.
Expert Rev Proteomics ; 2(3): 381-92, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16000084

RESUMO

In various areas of research, proteomics and particularly the quantification of proteins and peptides renders a useful addition to biochemical experiments. The range of possible applications varies from supervision of concentration changes of relevant proteins during biogenesis to differential proteomics approaches, distinguishing, for instance, healthy and diseased states. Furthermore, mass spectrometry-based peptide quantification yields the possibility of using highly sensitive bottom-up approaches for determination of protein regulations as well as multiplexing capability. Thereby, changes in protein abundances may be linked to specific cellular states bearing the opportunity to reveal marker proteins for several diseases.


Assuntos
Espectrometria de Massas/métodos , Peptídeos/análise , Aminoácidos/química , Fenômenos Fisiológicos Bacterianos , Marcação por Isótopo/métodos , Peptídeos/química , Fenômenos Fisiológicos Vegetais
12.
Proteomics ; 4(12): 3686-703, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15540203

RESUMO

During the last decade, protein analysis and proteomics have been established as new tools for understanding various biological problems. As the identification of proteins after classical separation techniques, such as two-dimensional gel electrophoresis, have become standard methods, new challenges arise in the field of proteomics. The development of "functional proteomics" combines functional characterization, like regulation, localization and modification, with the identification of proteins for deeper insight into cellular functions. Therefore, different mass spectrometric techniques for the analysis of post-translational modifications, such as phosphorylation and glycosylation, have been established as well as isolation and separation methods for the analysis of highly complex samples, e.g. protein complexes or cell organelles. Furthermore, quantification of protein levels within cells is becoming a focus of interest as mass spectrometric methods for relative or even absolute quantification have currently not been available. Protein or genome databases have been an essential part of protein identification up to now. Thus, de novo sequencing offers new possibilities in protein analytical studies of organisms not yet completely sequenced. The intention of this review is to provide a short overview about the current capabilities of protein analysis when addressing various biological problems.


Assuntos
Espectrometria de Massas/métodos , Proteômica/métodos , Algoritmos , Animais , Cromatografia Líquida de Alta Pressão , Bases de Dados como Assunto , Eletroforese em Gel Bidimensional/métodos , Glicosilação , Humanos , Peptídeo Hidrolases/química , Peptídeos/química , Fosforilação , Polissacarídeos/química , Processamento de Proteína Pós-Traducional , Proteínas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA