RESUMO
Heart failure remains a significant cause of morbidity and mortality following myocardial infarction. Cardiac remuscularization with transplantation of human pluripotent stem cell-derived cardiomyocytes is a promising preclinical therapy to restore function. Recent large animal data, however, have revealed a significant risk of engraftment arrhythmia (EA). Although transient, the risk posed by EA presents a barrier to clinical translation. We hypothesized that clinically approved antiarrhythmic drugs can prevent EA-related mortality as well as suppress tachycardia and arrhythmia burden. This study uses a porcine model to provide proof-of-concept evidence that a combination of amiodarone and ivabradine can effectively suppress EA. None of the nine treated subjects experienced the primary endpoint of cardiac death, unstable EA, or heart failure compared with five out of eight (62.5%) in the control cohort (hazard ratio = 0.00; 95% confidence interval: 0-0.297; p = 0.002). Pharmacologic treatment of EA may be a viable strategy to improve safety and allow further clinical development of cardiac remuscularization therapy.
Assuntos
Amiodarona/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Ivabradina/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/transplante , Transplante de Células-Tronco/efeitos adversos , Taquicardia/tratamento farmacológico , Animais , Antiarrítmicos/uso terapêutico , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Modelos Animais de Doenças , Combinação de Medicamentos , Humanos , Masculino , Células-Tronco Pluripotentes/transplante , SuínosRESUMO
The engraftment of human stem cell-derived cardiomyocytes (hSC-CMs) is a promising treatment for remuscularizing the heart wall post-infarction, but it is plagued by low survival of transplanted cells. We hypothesize that this low survival rate is due to continued ischemia within the infarct, and that increasing the vascularization of the scar will ameliorate the ischemia and improve hSC-CM survival and engraftment. An adenovirus expressing the vascular growth factor Sonic Hedgehog (Shh) was injected into the infarcted myocardium of rats immediately after ischemia/reperfusion, four days prior to hSC-CM injection. By two weeks post-cell injection, Shh treatment had successfully increased capillary density outside the scar, but not within the scar. In addition, there was no change in vessel size or percent vascular volume when compared to cell injection alone. Micro-computed tomography revealed that Shh failed to increase the number and size of larger vessels. It also had no effect on graft size or heart function when compared to cell engraftment alone. Our data suggests that, when combined with the engraftment of hSC-CMs, expression of Shh within the infarct scar and surrounding myocardium is unable to increase vascularization of the infarct scar, and it does not improve survival or function of hSC-CM grafts.
Assuntos
Proteínas Hedgehog/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Adenoviridae/genética , Animais , Diferenciação Celular , Vasos Coronários/diagnóstico por imagem , Modelos Animais de Doenças , Vetores Genéticos/genética , Coração/diagnóstico por imagem , Proteínas Hedgehog/genética , Humanos , Masculino , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/mortalidade , Miocárdio/citologia , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Traumatismo por Reperfusão/complicações , Taxa de Sobrevida , Transfecção , Resultado do Tratamento , Regulação para Cima , Microtomografia por Raio-XRESUMO
Pluripotent stem cell-derived cardiomyocyte grafts can remuscularize substantial amounts of infarcted myocardium and beat in synchrony with the heart, but in some settings cause ventricular arrhythmias. It is unknown whether human cardiomyocytes can restore cardiac function in a physiologically relevant large animal model. Here we show that transplantation of â¼750 million cryopreserved human embryonic stem cell-derived cardiomyocytes (hESC-CMs) enhances cardiac function in macaque monkeys with large myocardial infarctions. One month after hESC-CM transplantation, global left ventricular ejection fraction improved 10.6 ± 0.9% vs. 2.5 ± 0.8% in controls, and by 3 months there was an additional 12.4% improvement in treated vs. a 3.5% decline in controls. Grafts averaged 11.6% of infarct size, formed electromechanical junctions with the host heart, and by 3 months contained â¼99% ventricular myocytes. A subset of animals experienced graft-associated ventricular arrhythmias, shown by electrical mapping to originate from a point-source acting as an ectopic pacemaker. Our data demonstrate that remuscularization of the infarcted macaque heart with human myocardium provides durable improvement in left ventricular function.
Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias Humanas/transplante , Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Animais , Criopreservação , Modelos Animais de Doenças , Humanos , Macaca , Infarto do Miocárdio/patologia , Miocárdio/patologia , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/transplante , PrimatasRESUMO
A novel myosin heavy chain 7 mutation (E848G) identified in a familial cardiomyopathy was studied in patient-specific induced pluripotent stem cell-derived cardiomyocytes. The cardiomyopathic human induced pluripotent stem cell-derived cardiomyocytes exhibited reduced contractile function as single cells and engineered heart tissues, and genome-edited isogenic cells confirmed the pathogenic nature of the E848G mutation. Reduced contractility may result from impaired interaction between myosin heavy chain 7 and cardiac myosin binding protein C.
RESUMO
We hypothesized that the neonatal rat heart would bring transplanted human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to maturity as it grows to adult size. In neonatal rat heart, engrafted hiPSC derivatives developed partially matured myofibrils after 3 months, with increasing cell size and sarcomere length. There was no difference between grafts from hiPSC-CMs or hiPSC-derived cardiac progenitors (hiPSC-CPs) at 3 months, nor was maturation influenced by infarction. Interestingly, the infarcted adult heart induced greater human cardiomyocyte hypertrophy and induction of cardiac troponin I expression than the neonatal heart. Although human cardiomyocytes at all time points were significantly smaller than the host rat cardiomyocytes, transplanted neonatal rat cardiomyocytes reached adult size and structure by 3 months. Thus, the adult rat heart induces faster maturation than the neonatal heart, and human cardiomyocytes mature more slowly than rat cardiomyocytes. The slower maturation of human cardiomyocytes could be related to environmental mismatch or cell-autonomous factors.
Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Sobrevivência Celular , Modelos Animais de Doenças , Humanos , Masculino , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Ratos , Transplante de Células-Tronco , Fatores de TempoRESUMO
Impaired systolic function, resulting from acute injury or congenital defects, leads to cardiac complications and heart failure. Current therapies slow disease progression but do not rescue cardiac function. We previously reported that elevating the cellular 2 deoxy-ATP (dATP) pool in transgenic mice via increased expression of ribonucleotide reductase (RNR), the enzyme that catalyzes deoxy-nucleotide production, increases myosin-actin interaction and enhances cardiac muscle contractility. For the current studies, we initially injected wild-type mice retro-orbitally with a mixture of adeno-associated virus serotype-6 (rAAV6) containing a miniaturized cardiac-specific regulatory cassette (cTnT(455)) composed of enhancer and promotor portions of the human cardiac troponin T gene (TNNT2) ligated to rat cDNAs encoding either the Rrm1 or Rrm2 subunit. Subsequent studies optimized the system by creating a tandem human RRM1-RRM2 cDNA with a P2A self-cleaving peptide site between the subunits. Both rat and human Rrm1/Rrm2 cDNAs resulted in RNR enzyme overexpression exclusively in the heart and led to a significant elevation of left ventricular (LV) function in normal mice and infarcted rats, measured by echocardiography or isolated heart perfusions, without adverse cardiac remodeling. Our study suggests that increasing RNR levels via rAAV-mediated cardiac-specific expression provide a novel gene therapy approach to potentially enhance cardiac systolic function in animal models and patients with heart failure.
Assuntos
Dependovirus/genética , Contração Miocárdica , Infarto do Miocárdio/terapia , Ribonucleotídeo Redutases/genética , Troponina T/genética , Animais , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos/administração & dosagem , Ventrículos do Coração/fisiopatologia , Humanos , Camundongos , Infarto do Miocárdio/fisiopatologia , Especificidade de Órgãos , Ratos , Ribonucleosídeo Difosfato Redutase/genéticaRESUMO
Cardiomyocytes derived from human embryonic stem cells (hESC-CMs) can improve the contractility of injured hearts.We hypothesized that mesodermal cardiovascular progenitors (hESC-CVPs), capable of generating vascular cells in addition to cardiomyocytes, would provide superior repair by contributing to multiple components of myocardium. We performed a head-to-head comparison of hESC-CMs and hESC-CVPs and compared these with the most commonly used clinical cell type, human bone marrow mononuclear cells (hBMMNCs). In a nude rat model of myocardial infarction, hESC-CMs and hESC-CVPs generated comparable grafts. Both similarly improved systolic function and ventricular dilation. Furthermore, only rare human vessels formed from hESC-CVPs. hBM-MNCs attenuated ventricular dilation and enhanced host vascularization without engrafting long-term or improving contractility. Thus, hESC-CMs and CVPs show similar efficacy for cardiac repair, and both are more efficient than hBM-MNCs. However, hESC-CVPs do not form larger grafts or more significant numbers of human vessels in the infarcted heart.
Assuntos
Células-Tronco Embrionárias/citologia , Células Progenitoras Endoteliais/citologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Transplante de Células-Tronco , Animais , Células Cultivadas , Humanos , Masculino , Contração Miocárdica , Miócitos Cardíacos/fisiologia , Ratos , Ratos Sprague-Dawley , Função VentricularRESUMO
BACKGROUND: Maternal smoking is a risk factor for low birth weight and other adverse developmental outcomes. OBJECTIVE: We sought to determine the impact of standard tobacco cigarettes and e-cigarettes on heart development in vitro and in vivo. METHODS: Zebrafish (Danio rerio) were used to assess developmental effects in vivo and cardiac differentiation of human embryonic stem cells (hESCs) was used as a model for in vitro cardiac development. RESULTS: In zebrafish, exposure to both types of cigarettes results in broad, dose-dependent developmental defects coupled with severe heart malformation, pericardial edema and reduced heart function. Tobacco cigarettes are more toxic than e-cigarettes at comparable nicotine concentrations. During cardiac differentiation of hESCs, tobacco smoke exposure results in a delayed transition through mesoderm. Both types of cigarettes decrease expression of cardiac transcription factors in cardiac progenitor cells, suggesting a persistent delay in differentiation. In definitive human cardiomyocytes, both e-cigarette- and tobacco cigarette-treated samples showed reduced expression of sarcomeric genes such as MLC2v and MYL6. Furthermore, tobacco cigarette-treated samples had delayed onset of beating and showed low levels and aberrant localization of N-cadherin, reduced myofilament content with significantly reduced sarcomere length, and increased expression of the immature cardiac marker smooth muscle alpha-actin. CONCLUSION: These data indicate a negative effect of both tobacco cigarettes and e-cigarettes on heart development in vitro and in vivo. Tobacco cigarettes are more toxic than E-cigarettes and exhibit a broader spectrum of cardiac developmental defects.
Assuntos
Células-Tronco Embrionárias/efeitos dos fármacos , Coração/embriologia , Fumar/efeitos adversos , Animais , Relação Dose-Resposta a Droga , Desenvolvimento Embrionário/efeitos dos fármacos , Citometria de Fluxo , Imunofluorescência , Coração/efeitos dos fármacos , Coração/crescimento & desenvolvimento , Humanos , Reação em Cadeia da Polimerase , Peixe-Zebra/embriologiaRESUMO
AIMS: Heart failure remains a leading cause of morbidity, hospitalizations, and deaths. We previously showed that overexpression of the enzyme ribonucleotide reductase (RNR) in cardiomyocytes increased levels of the myosin activator, 2-deoxy-ATP, catalysed enhanced contraction, and improved cardiac performance in rodent hearts. Here we used a swine model of myocardial infarction (MI) to test preliminarily a novel gene therapy for heart failure based on delivery of the human RNR enzyme complex under the control of a cardiac-specific promoter via an adeno-associated virus serotype 6 vector--designated as BB-R12. METHODS AND RESULTS: We induced heart failure following MI in Yucatan minipigs by balloon occlusion of the left anterior descending artery. Two weeks, later, pigs received BB-R12 at one of three doses via antegrade coronary infusion. At 2 months post-treatment, LVEF and systolic LV dimension (measured by echocardiography) improved significantly in the high-dose group, despite further deterioration in the saline controls. Haemodynamic parameters including LV end-diastolic pressure, +dP/dt, and -dP/dt all trended towards improvement in the high-dose group. We observed no difference in the histopathological appearance of hearts or other organs from treated animals vs. controls, nor did we encounter any safety or tolerability concerns following BB-R12 delivery. CONCLUSION: These pilot results suggest cardiac-specific gene therapy using BB-R12 may reverse cardiac dysfunction by myosin activation in a large-animal heart failure model with no observed safety concerns. Thus further research into the therapeutic potential of BB-R12 for patients with chronic heart failure appears warranted.
Assuntos
Nucleotídeos de Desoxiadenina/análise , Terapia Genética/métodos , Insuficiência Cardíaca/terapia , Ribonucleotídeo Redutases/farmacologia , Animais , Pressão Sanguínea/fisiologia , Doença Crônica , Dependovirus/genética , Modelos Animais de Doenças , Ecocardiografia , Vetores Genéticos , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/efeitos dos fármacos , Hemodinâmica , Humanos , Infarto do Miocárdio/complicações , Projetos Piloto , Suínos , Porco Miniatura , Sístole/efeitos dos fármacosRESUMO
Pluripotent stem cells provide a potential solution to current epidemic rates of heart failure by providing human cardiomyocytes to support heart regeneration. Studies of human embryonic-stem-cell-derived cardiomyocytes (hESC-CMs) in small-animal models have shown favourable effects of this treatment. However, it remains unknown whether clinical-scale hESC-CM transplantation is feasible, safe or can provide sufficient myocardial regeneration. Here we show that hESC-CMs can be produced at a clinical scale (more than one billion cells per batch) and cryopreserved with good viability. Using a non-human primate model of myocardial ischaemia followed by reperfusion, we show that cryopreservation and intra-myocardial delivery of one billion hESC-CMs generates extensive remuscularization of the infarcted heart. The hESC-CMs showed progressive but incomplete maturation over a 3-month period. Grafts were perfused by host vasculature, and electromechanical junctions between graft and host myocytes were present within 2 weeks of engraftment. Importantly, grafts showed regular calcium transients that were synchronized to the host electrocardiogram, indicating electromechanical coupling. In contrast to small-animal models, non-fatal ventricular arrhythmias were observed in hESC-CM-engrafted primates. Thus, hESC-CMs can remuscularize substantial amounts of the infarcted monkey heart. Comparable remuscularization of a human heart should be possible, but potential arrhythmic complications need to be overcome.
Assuntos
Células-Tronco Embrionárias/citologia , Coração , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Regeneração , Animais , Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Sobrevivência Celular , Vasos Coronários/fisiologia , Criopreservação , Modelos Animais de Doenças , Eletrocardiografia , Humanos , Macaca nemestrina , Masculino , Camundongos , Medicina Regenerativa/métodosRESUMO
BACKGROUND: Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) have great potential as a cell source for therapeutic applications such as regenerative medicine, disease modeling, drug screening, and toxicity testing. This potential is limited, however, by the immature state of the cardiomyocytes acquired using current protocols. Tri-iodo-l-thyronine (T3) is a growth hormone that is essential for optimal heart growth. In this study, we investigated the effect of T3 on hiPSC-CM maturation. METHODS AND RESULTS: A one-week treatment with T3 increased cardiomyocyte size, anisotropy, and sarcomere length. T3 treatment was associated with reduced cell cycle activity, manifest as reduced DNA synthesis and increased expression of the cyclin-dependent kinase inhibitor p21. Contractile force analyses were performed on individual cardiomyocytes using arrays of microposts, revealing an almost two-fold higher force per-beat after T3 treatment and also an enhancement in contractile kinetics. This improvement in force generation was accompanied by an increase in rates of calcium release and reuptake, along with a significant increase in sarcoendoplasmic reticulum ATPase expression. Finally, although mitochondrial genomes were not numerically increased, extracellular flux analysis showed a significant increase in maximal mitochondrial respiratory capacity and respiratory reserve capability after T3 treatment. CONCLUSIONS: Using a broad spectrum of morphological, molecular, and functional parameters, we conclude that T3 is a driver for hiPSC-CM maturation. T3 treatment may enhance the utility of hiPSC-CMs for therapy, disease modeling, or drug/toxicity screens.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Sarcômeros/efeitos dos fármacos , Tri-Iodotironina/farmacologia , Animais , Cálcio/metabolismo , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Sarcômeros/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismoRESUMO
The main objective of cell therapy is the regeneration of damaged tissues. To distinguish graft from host tissue by magnetic resonance imaging (MRI), a paramagnetic label must be introduced to cells prior to transplantation. The paramagnetic label can be either exogenous iron oxide nanoparticles or a genetic overexpression of ferritin, an endogenous iron storage protein. The purpose of this work was to compare the efficacy of these 2 methods for MRI evaluation of engrafted cell survival in the infarcted mouse heart. Mouse skeletal myoblasts were labeled either by cocultivation with iron oxide particles or by engineering them to overexpress ferritin. Along with live cell transplantation, 2 other groups of mice were injected with dead-labeled cells. Both particle-labeled and ferritin-tagged grafts were detected as areas of MRI signal hypointensity in the left ventricle of the mouse heart using T2*-weighted sequences, although the signal attenuation decreased with ferritin tagging. Importantly, live cells could not be distinguished from dead cells when labeled with iron oxide particles, whereas the ferritin tagging was detected only in live grafts, thereby allowing identification of viable grafts using MRI. Thus, iron oxide particles can provide information about initial cell injection success but cannot assess graft viability. On the other hand, genetically based cell tagging, such as ferritin overexpression, despite having lower signal intensity in comparison with iron oxide particles, is able to identify live transplanted cells.
RESUMO
OBJECTIVE: Intimal hyperplasia is considered to be a healing response and is a major cause of vessel narrowing after injury, where migration of vascular progenitor cells contributes to pathological events, including transplant arteriosclerosis. APPROACH AND RESULTS: In this study, we used a rat aortic-allograft model to identify the predominant cell types associated with transplant arteriosclerosis and to identify factors important in their recruitment into the graft. Transplantation of labeled adventitial tissues allowed us to identify the adventitia as a major source of cells migrating to the intima. RNA microarrays revealed a potential role for monocyte chemoattractant protein 1 (MCP-1), stromal cell-derived factor 1, regulated on activation, normal T cell expressed and secreted, and interferon-inducible protein 10 in the induced vasculopathy. MCP-1 induced migration of adventitial fibroblast cells. CCR2, the receptor for MCP-1, was coexpressed with CD90, CD44, NG2, or sca-1 on mesenchymal stem cells. In vivo experiments using MCP-1-deficient and CCR2-deficient mice confirmed an important role of MCP-1 in the formation of intimal hyperplasia in a mouse model of vascular injury. CONCLUSIONS: The adventitia is a potentially important cellular source that contributes to intimal hyperplasia, and MCP-1 is a potent chemokine for the recruitment of adventitial vascular progenitor cells to intimal lesions.
Assuntos
Quimiocina CCL2/metabolismo , Células-Tronco Mesenquimais/citologia , Neointima/patologia , Túnica Íntima/patologia , Animais , Movimento Celular , Quimiocina CCL2/genética , Hiperplasia/genética , Hiperplasia/patologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Modelos Animais , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Ratos , Sensibilidade e Especificidade , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Transplante Homólogo , Túnica Íntima/metabolismo , Lesões do Sistema Vascular/patologia , Lesões do Sistema Vascular/fisiopatologiaRESUMO
Transplantation studies in mice and rats have shown that human embryonic-stem-cell-derived cardiomyocytes (hESC-CMs) can improve the function of infarcted hearts, but two critical issues related to their electrophysiological behaviour in vivo remain unresolved. First, the risk of arrhythmias following hESC-CM transplantation in injured hearts has not been determined. Second, the electromechanical integration of hESC-CMs in injured hearts has not been demonstrated, so it is unclear whether these cells improve contractile function directly through addition of new force-generating units. Here we use a guinea-pig model to show that hESC-CM grafts in injured hearts protect against arrhythmias and can contract synchronously with host muscle. Injured hearts with hESC-CM grafts show improved mechanical function and a significantly reduced incidence of both spontaneous and induced ventricular tachycardia. To assess the activity of hESC-CM grafts in vivo, we transplanted hESC-CMs expressing the genetically encoded calcium sensor, GCaMP3 (refs 4, 5). By correlating the GCaMP3 fluorescent signal with the host ECG, we found that grafts in uninjured hearts have consistent 1:1 hostgraft coupling. Grafts in injured hearts are more heterogeneous and typically include both coupled and uncoupled regions. Thus, human myocardial grafts meet physiological criteria for true heart regeneration, providing support for the continued development of hESC-based cardiac therapies for both mechanical and electrical repair.
Assuntos
Arritmias Cardíacas/terapia , Fenômenos Eletrofisiológicos , Células-Tronco Embrionárias/citologia , Traumatismos Cardíacos/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/transplante , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Cálcio/análise , Cálcio/metabolismo , Estimulação Elétrica , Corantes Fluorescentes/análise , Cobaias , Traumatismos Cardíacos/complicações , Traumatismos Cardíacos/patologia , Humanos , Medições Luminescentes , Masculino , Contração Miocárdica/fisiologia , Miocárdio/citologia , Miócitos Cardíacos/fisiologia , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/fisiopatologia , Taquicardia Ventricular/terapiaRESUMO
The noninvasive detection of transplanted cells in damaged organs and the longitudinal follow-up of cell fate and graft size are important for the evaluation of cell therapy. We have shown previously that the overexpression of the natural iron storage protein, ferritin, permits the detection of engrafted cells in mouse heart by MRI, but further imaging optimization is required. Here, we report a systematic evaluation of ferritin-based stem cell imaging in infarcted mouse hearts in vivo using three cardiac-gated pulse sequences in a 3-T scanner: black-blood proton-density-weighted turbo spin echo (PD TSE BB), bright-blood T(2) -weighted gradient echo (GRE) and black-blood T(2) -weighted GRE with improved motion-sensitized-driven equilibrium (iMSDE) preparation. Transgenic C2C12 myoblast grafts overexpressing ferritin did not change MRI contrast in the PD TSE BB images, but showed a 20% reduction in signal intensity ratio in black-blood T(2) -weighted iMSDE (p < 0.05) and a 30% reduction in bright-blood T(2) -weighted GRE (p < 0.0001). Graft size measurements by T(2) iMSDE and T(2) GRE were highly correlated with histological assessments (r = 0.79 and r = 0.89, respectively). Unlabeled wild-type C2C12 cells transplanted to mouse heart did not change the MRI signal intensity, although endogenous hemosiderin was seen in some infarcts. These data support the use of ferritin to track the survival, growth and migration of stem cells transplanted into the injured heart.
Assuntos
Ferritinas/metabolismo , Imageamento por Ressonância Magnética/métodos , Infarto do Miocárdio/terapia , Processamento de Sinais Assistido por Computador , Transplante de Células-Tronco , Animais , Linhagem Celular , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/patologia , Reprodutibilidade dos TestesRESUMO
An unmet need in cardiac cell therapy is a noninvasive imaging technique capable of tracking changes in graft size over time and monitoring cell dynamics such as replication and death, factors to which commonly used superparamagnetic nanoparticles are insensitive. Our goal was to explore if overexpression of ferritin, a nontoxic iron-binding protein, can be used for noninvasive magnetic resonance imaging (MRI) of cells transplanted into the infarcted heart. Mouse skeletal myoblasts (C2C12 cells) were engineered to overexpress ferritin. Ferritin overexpression did not interfere with cell viability, proliferation, or differentiation into multinucleated myotubes. Ferritin overexpression caused a 25% decrease in T2 relaxation time in vitro compared to wild-type cells. Transgenic grafts were detected in vivo 3 weeks after transplantation into infarcted hearts of syngeneic mice as areas of hypointensity caused by iron accumulation in overexpressed ferritin complexes. Graft size evaluation by MRI correlated tighly with histologic measurements (R2 = .8). Our studies demonstrated the feasibility of ferritin overexpression in mouse skeletal myoblasts and the successful detection of transgenic cells by MRI in vitro and in vivo after transplantation into the infarcted mouse heart. These experiments lay the groundwork for using the MRI gene reporter ferritin to track stem cells transplanted to the heart.
Assuntos
Apoferritinas/biossíntese , Imageamento por Ressonância Magnética/métodos , Mioblastos Esqueléticos/fisiologia , Transplante de Células-Tronco/métodos , Células-Tronco/metabolismo , Animais , Apoferritinas/genética , Apoferritinas/farmacologia , Diferenciação Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/fisiologia , Modelos Lineares , Camundongos , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo , Infarto do Miocárdio/terapia , Miocárdio/citologia , Miocárdio/metabolismo , Miocárdio/patologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reprodutibilidade dos Testes , Células-Tronco/citologia , TransfecçãoRESUMO
In recent years, cell transplantation has drawn tremendous interest as a novel approach to preserving or even restoring contractile function to infarcted hearts. A typical human infarct involves the loss of approximately 1 billion cardiomyocytes, and, therefore, many investigators have sought to identify endogenous or exogenous stem cells with the capacity to differentiate into committed cardiomyocytes and repopulate lost myocardium. As a result of these efforts, dozens of stem cell types have been reported to have cardiac potential. These include pluripotent embryonic stem cells, as well various adult stem cells resident in compartments including bone marrow, peripheral tissues, and the heart itself. Some of these cardiogenic progenitors have been reported to contribute replacement muscle through endogenous reparative processes or via cell transplantation in preclinical cardiac injury models. However, considerable disagreement exists regarding the efficiency and even the reality of cardiac differentiation by many of these stem cell types, making these issues a continuing source of controversy in the field. In this review, we consider approaches to cell fate mapping and establishing the cardiac phenotype, as well as the present state of the evidence for the cardiogenic and regenerative potential of the major candidate stem cell types.
Assuntos
Diferenciação Celular , Infarto do Miocárdio/terapia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Transplante de Células-Tronco , Células-Tronco/metabolismo , Animais , Transdiferenciação Celular , Modelos Animais de Doenças , Humanos , Contração Miocárdica , Infarto do Miocárdio/metabolismo , RegeneraçãoRESUMO
Stem cell transplantation may repair the injured heart, but tissue regeneration is limited by death of transplanted cells. Most cell death occurs in the first few days post-transplantation, likely from a combination of ischemia, anoikis and inflammation. Interventions known to enhance transplanted cell survival include heat shock, over-expressing anti-apoptotic proteins, free radical scavengers, anti-inflammatory therapy and co-delivery of extracellular matrix molecules. Combinatorial use of such interventions markedly enhances graft cell survival, but death still remains a significant problem. We review these challenges to cardiac cell transplantation and present an approach to systematically address them. Most anti-death studies use histology to assess engraftment, which is time- and labor-intensive. To increase throughput, we developed two biochemical approaches to follow graft viability in the mouse heart. The first relies on LacZ enzymatic activity to track genetically modified cells, and the second quantifies human genomic DNA content using repetitive Alu sequences. Both show linear relationships between input cell number and biochemical signal, but require correction for the time lag between cell death and loss of signal. Once optimized, they permit detection of as few as 1 graft cell in 40,000 host cells. Pro-survival effects measured biochemically at three days predict long-term histological engraftment benefits. These methods permitted identification of carbamylated erythropoietin (CEPO) as a pro-survival factor for human embryonic stem cell-derived cardiomyocyte grafts. CEPO's effects were additive to heat shock, implying independent survival pathways. This system should permit combinatorial approaches to enhance graft viability in a fraction of the time required for conventional histology.