RESUMO
The preoptic area of the hypothalamus (POA) is essential for sleep regulation. However, the cellular makeup of the POA is heterogeneous, and the molecular identities of the sleep-promoting cells remain elusive. To address this question, this study compares mice during recovery sleep following sleep deprivation to mice allowed extended sleep. Single-nucleus RNA sequencing (single-nucleus RNA-seq) identifies one galanin inhibitory neuronal subtype that shows upregulation of rapid and delayed activity-regulated genes during recovery sleep. This cell type expresses higher levels of growth hormone receptor and lower levels of estrogen receptor compared to other galanin subtypes. single-nucleus RNA-seq also reveals cell-type-specific upregulation of purinergic receptor (P2ry14) and serotonin receptor (Htr2a) during recovery sleep in this neuronal subtype, suggesting possible mechanisms for sleep regulation. Studies with RNAscope validate the single-nucleus RNA-seq findings. Thus, the combined use of single-nucleus RNA-seq and activity-regulated genes identifies a neuronal subtype functionally involved in sleep regulation.
Assuntos
Galanina , Neurônios , Área Pré-Óptica , Privação do Sono , Animais , Galanina/metabolismo , Galanina/genética , Neurônios/metabolismo , Área Pré-Óptica/metabolismo , Camundongos , Privação do Sono/metabolismo , Privação do Sono/genética , Masculino , RNA-Seq , Camundongos Endogâmicos C57BL , Sono/genética , Sono/fisiologia , Análise de Célula ÚnicaRESUMO
OBJECTIVE: Nausea and vomiting remain life-threatening obstacles to successful treatment of chronic diseases, despite a cadre of available antiemetic medications. Our inability to effectively control chemotherapy-induced nausea and vomiting (CINV) highlights the need to anatomically, molecularly, and functionally characterize novel neural substrates that block CINV. METHODS: Behavioral pharmacology assays of nausea and emesis in 3 different mammalian species were combined with histological and unbiased transcriptomic analyses to investigate the beneficial effects of glucose-dependent insulinotropic polypeptide receptor (GIPR) agonism on CINV. RESULTS: Single-nuclei transcriptomics and histological approaches in rats revealed a topographical, molecularly distinct, GABA-ergic neuronal population in the dorsal vagal complex (DVC) that is modulated by chemotherapy but rescued by GIPR agonism. Activation of DVCGIPR neurons substantially decreased behaviors indicative of malaise in cisplatin-treated rats. Strikingly, GIPR agonism blocks cisplatin-induced emesis in both ferrets and shrews. CONCLUSION: Our multispecies study defines a peptidergic system that represents a novel therapeutic target for the management of CINV, and potentially other drivers of nausea/emesis.
Assuntos
Antineoplásicos , Cisplatino , Animais , Ratos , Cisplatino/efeitos adversos , Furões , Náusea/induzido quimicamente , Náusea/tratamento farmacológico , Náusea/epidemiologia , Vômito/induzido quimicamente , Vômito/tratamento farmacológico , Antineoplásicos/efeitos adversosRESUMO
Cancer metastasis to the brain is a significant clinical problem. Metastasis is the consequence of favorable interactions between invaded cancer cells and the microenvironment. Here, we demonstrate that cancer-activated astrocytes create a sustained low-level activated type I interferon (IFN) microenvironment in brain metastatic lesions. We further confirm that the IFN response in astrocytes facilitates brain metastasis. Mechanistically, IFN signaling in astrocytes activates C-C Motif Chemokine Ligand 2 (CCL2) production, which further increases the recruitment of monocytic myeloid cells. The correlation between CCL2 and monocytic myeloid cells is confirmed in clinical brain metastasis samples. Lastly, genetically or pharmacologically inhibiting C-C Motif Chemokine Receptor 2 (CCR2) reduces brain metastases. Our study clarifies a pro-metastatic effect of type I IFN in the brain even though IFN response has been considered to have anti-tumor effects. Moreover, this work expands our understandings on the interactions between cancer-activated astrocytes and immune cells in brain metastasis.
Assuntos
Neoplasias Encefálicas , Interferon Tipo I , Humanos , Interferon Tipo I/metabolismo , Astrócitos/metabolismo , Quimiocina CCL2/metabolismo , Células Mieloides/metabolismo , Neoplasias Encefálicas/patologia , Receptores CCR2/metabolismo , Microambiente TumoralRESUMO
Glucagon-like peptide 1 receptor (GLP-1R) agonists decrease body weight and improve glycemic control in obesity and diabetes. Patient compliance and maximal efficacy of GLP-1 therapeutics are limited by adverse side effects, including nausea and emesis. In three different species (i.e., mice, rats, and musk shrews), we show that glucose-dependent insulinotropic polypeptide receptor (GIPR) signaling blocks emesis and attenuates illness behaviors elicited by GLP-1R activation, while maintaining reduced food intake, body weight loss, and improved glucose tolerance. The area postrema and nucleus tractus solitarius (AP/NTS) of the hindbrain are required for food intake and body weight suppression by GLP-1R ligands and processing of emetic stimuli. Using single-nuclei RNA sequencing, we identified the cellular phenotypes of AP/NTS cells expressing GIPR and GLP-1R on distinct populations of inhibitory and excitatory neurons, with the greatest expression of GIPR in γ-aminobutyric acid-ergic neurons. This work suggests that combinatorial pharmaceutical targeting of GLP-1R and GIPR will increase efficacy in treating obesity and diabetes by reducing nausea and vomiting.
Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Náusea/induzido quimicamente , Náusea/tratamento farmacológico , Receptores dos Hormônios Gastrointestinais/agonistas , Animais , Peso Corporal/efeitos dos fármacos , Comportamento Alimentar , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Musaranhos , VômitoRESUMO
BACKGROUND: The functional mechanism is unknown for many genetic variants associated with substance use disorder phenotypes. Rs678849, an intronic variant in the delta-opioid receptor gene (OPRD1), has been found to predict regional brain volume, addiction risk, and the efficacy of buprenorphine/naloxone in treating opioid use disorder. The variant has also been implicated as an expression quantitative trait locus (eQTL) for several genes. OBJECTIVES: The objective of this study was to identify functional differences between the two alleles of rs678849 in vitro. We hypothesized that the two alleles of rs678849 would have different effects on transcriptional activity due to differential interactions with transcription factors. METHODS: 15bp regions containing the C or T alleles of rs678849 were cloned into luciferase constructs and transfected into BE(2)C neuroblastoma cells to test the effect on transcription. Electrophoretic mobility shift assays (EMSA) using nuclear lysates from BE(2)C cell or human postmortem medial prefrontal cortex were used to identify proteins that differentially bound the two alleles. RESULTS: At 24 hours post-transfection, the C allele construct had significantly lower luciferase expression than the T allele construct and empty vector control (ANOVA p < .001). Proteomic analysis and supershift assays identified XRCC6 as a transcription factor specifically binding the C allele, whereas hnRNP D0 was found to specifically bind the T allele. CONCLUSION: These functional differences between the C and T alleles may help explain the psychiatric and neurological phenotype differences predicted by rs678849 genotype and the potential role of the variant as an eQTL.
Assuntos
Ribonucleoproteína Nuclear Heterogênea D0/metabolismo , Autoantígeno Ku/metabolismo , Variantes Farmacogenômicos , Receptores Opioides delta/genética , Fatores de Transcrição/metabolismo , Alelos , Ensaio de Desvio de Mobilidade Eletroforética , Genótipo , Humanos , Luciferases de Vaga-Lume , Ligação Proteica/genética , Locos de Características Quantitativas/genéticaRESUMO
We previously demonstrated that monocyte-macrophage based drug delivery can be applied to a spectrum of infectious, neoplastic, and degenerative disorders. In particular, bone marrow-derived macrophages (BMM) loaded with nano formulated catalase, "nanozyme", were shown to attenuate neuro inflammation and nigrostriatal degeneration in rodent models of Parkinson's disease (PD). Nonetheless, the pharmacokinetics and biodistribution of BMM-incorporated nanozyme has not been explored. To this end, we now demonstrate that BMM, serving as a "depot" for nanozyme, increased area under the curve(AUC), half-life, and mean residence time in blood circulation of the protein when compared to the nanozyme administered alone. Accordingly, bioavailability of the nanozyme for the brain, spleen, kidney, and liver was substantially increased. Importantly, nanozyme-loaded BMM targeted diseased sites and improved transport across the blood brain barrier. This was seen specifically in affected brain subregions in models of PD. Engaging natural immune cells such as monocyte-macrophages as drug carriers provides a new perspective for therapeutic delivery for PD and also likely a range of other inflammatory and degenerative diseases.